Skip to main content

Investigation of Process Parameters for Friction Stir Processing (FSP) of Ti-6Al-4V Alloy

  • Conference paper
  • First Online:
Friction Stir Welding and Processing IX

Abstract

In the current work friction stir processing of the Ti-6Al-4V alloy was carried out. Various process parameters (tool traverse speed and tool rotation speed) were studied for successful FSP of Ti-6Al-4V. The process parameters were identified using macrostructure observation on the surface of processed plate and microstructure evolution in the stir zone (SZ) of the FSP specimen. The effect of tool traverse speed and tool rotation speed on microstructure evolution in the SZ, thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ) were studied. The microstructure transformation from initial elongated α structure to prior β grains, with α layer grain boundary consisting of mixture of acicular α′ and very fine lamellar α/β colonies, was observed at SZ. This was the case for wide range of variations in parameters except for the tool rotation speed of 600 rpm and traverse speed of 60 and 100 mm/min. Under this combination of parameters, the bands of DRX α and transformed β structure were observed to evolve at SZ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mishra Rajiv S, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78

    Google Scholar 

  2. Pilchak AL, Juhas MC, Williams JC (2007) Microstructural changes due to friction stir processing of investment-cast Ti-6Al-4V. Metall Mater Trans A 38:401–408

    Article  Google Scholar 

  3. Pilchak AL, Norfleet DM, Juhas MC, Williams JC (2008) Friction stir processing of investment-cast Ti-6Al-4V: microstructure and properties. Metall Mater Trans A 39:1519–1524

    Article  Google Scholar 

  4. Sharma SR, Ma ZY, Mishra RS (2004) Effect of friction stir processing on fatigue behavior of A356 alloy. Scripta Materialia 51:237–241

    Google Scholar 

  5. Kwon YJ, Saito N, Shigematsu I (2002) Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy. J Mater Sci Lett 21:1473–1476

    Article  Google Scholar 

  6. Ma ZY, Sharma SR, Mishra RS (2006) Effect of multiple-pass friction stir processing on microstructure and tensile properties of a cast aluminum–silicon alloy. Scripta Materialia 54:1623–1626

    Google Scholar 

  7. Johannes LB, Mishra RS (2007) Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum. Mater Sci Eng A 464:255–260

    Article  Google Scholar 

  8. Rao AG, Katkar VA, Gunasekaran G, Deshmukh VP, Prabhu N, Kashyap BP (2014) Effect of multipass friction stir processing on corrosion resistance of hypereutectic Al–30Si alloy. Corros Sci 83:198–208

    Article  Google Scholar 

  9. Feng AH, Ma ZY (2007) Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing. Scripta Mater 56:397–400

    Article  Google Scholar 

  10. Charit I, Mishra RS (2003) High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing. Mater Sci Eng A 359:290–296

    Google Scholar 

  11. Ma ZY, Mishra RS, Mahoney MW, Grimes R (2003) High strain rate superplasticity in friction stir processed Al–Mg–Zr alloy. Mater Sci Eng A 351:148–153

    Article  Google Scholar 

  12. Ma ZY, Mishra RS, Mahoney MW (2002) Superplastic deformation behavior of friction stir processed 7075Al alloy. Acta Materialia 50:4419–4430

    Google Scholar 

  13. Liu G, Murr LE, Niou C-S, McClure JC, Vega FR (1997) Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scripta Materialia 37:355–361

    Google Scholar 

  14. Soon PH, Kimura T, Murakamic T, Naganod Y, Nakata K, Ushio M (2004) Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy. Mater Sci Eng A 371:160–169

    Google Scholar 

  15. Su J-Q, Nelson TW, McNelley TR, Mishra RS (2011) Development of nanocrystalline structure in Cu during friction stir processing (FSP). Mater Sci Eng A 528:5458–5464

    Google Scholar 

  16. Lee W-B, Kim J-W, Yeon Y-M, Jung S-B (2003) The joint characteristics of friction stir welded AZ91D magnesium alloy. Mater Trans 44:917–923

    Google Scholar 

  17. Rai R, De A, Bhadeshia HKDH, DebRoy T (2011) Review: friction stir welding tools. Sci Technol Weld Join 16:325–342

    Article  Google Scholar 

  18. Gerd L, Williams JC (2003) Titanium, vol 2. Springer, Berlin

    Google Scholar 

  19. Christoph Leyens, Peters Manfred (2003) Titanium and titanium alloys. Wiley-VCH, Weinheim

    Google Scholar 

  20. Su J, Mishra RS, Wang J, Xu R, Baumann JA (2013) Microstructure and mechanical properties of a friction stir processed Ti–6Al–4V alloy. Mater Sci Eng A 573:67–74

    Google Scholar 

  21. Davies PS, Wynne BP, Rainforth WM, Thomas MJ, Threadgill PL (2011) Development of microstructure and crystallographic texture during stationary shoulder friction stir welding of Ti-6Al-4V. Metall Mater Trans A 42:2278–2289

    Google Scholar 

  22. Edwards PD, Ramulu M (2009) Investigation of microstructure, surface and subsurface characteristics in titanium alloy friction stir welds of varied thicknesses. Sci Technol Weld Joining 14:476–483

    Article  Google Scholar 

  23. Paola L, Cerri E (2014) Friction stir welding of Ti-6Al-4V alloy. Mater Sci Forum 783:574–579

    Google Scholar 

  24. Zhang Y, Sato YS, Kokawa H, Park SHC, Hirano S (2008) Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds. Mater Sci Eng A 485:448–455

    Google Scholar 

  25. Liu HJ, Zhou L, Liu QW (2010) Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloy. Mater Des 31:1650–1655

    Article  Google Scholar 

  26. Zhou L, Liu HJ, Liu QW (2010) Effect of rotation speed on microstructure and mechanical properties of Ti–6Al–4V friction stir welded joints. Mater Des 31:2631–2636

    Article  Google Scholar 

  27. Pilchak AL, Tang W, Sahiner H, Reynolds AP, Williams JC (2011) Microstructure evolution during friction stir welding of mill-annealed Ti-6Al-4V. Metall Mater Trans A 42:745–762

    Article  Google Scholar 

  28. Ramirez AJ, Juhas MC (2003) Microstructural evolution in Ti-6Al-4V friction stir welds. Mater Sci Forum 426:2999–3004

    Google Scholar 

  29. Edwards P, Ramulu M (2010) Identification of process parameters for friction stir welding Ti–6Al–4V. J Eng Mater Technol 132:031006

    Article  Google Scholar 

  30. Edwards P, Ramulu M (2010) Peak temperatures during friction stir welding of Ti–6Al–4V. Sci Technol Weld Joining 15:468–472

    Article  Google Scholar 

  31. Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39:642–658

    Article  Google Scholar 

  32. Mishra RS, Mahoney MW (2007) Friction stir welding and processing. Editors ASM International, pp 37–49

    Google Scholar 

  33. Sirilar P, Srichandr P (2006) Grain refinement of α/β phase Ti-6Al-4V alloy by thermomechanical treatment. In: Proceedings of the 4th Thailand materials science and technology conference, paper M13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Chougule .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Chougule, S., Sheed, D., Singh, R.K.P., Prabhu, N., Kashyap, B.P., Jha, K. (2017). Investigation of Process Parameters for Friction Stir Processing (FSP) of Ti-6Al-4V Alloy. In: Hovanski, Y., Mishra, R., Sato, Y., Upadhyay, P., Yan, D. (eds) Friction Stir Welding and Processing IX. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52383-5_7

Download citation

Publish with us

Policies and ethics