Skip to main content

Leader-Follower Models in Facility Location

  • Chapter
  • First Online:
Spatial Interaction Models

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 118))

Abstract

Facility location models deal, for the most part, with the location of plants, warehouses, distribution centers, retail facilities among others. In this chapter we review the game theoretical concept of the leader-follower in facility location models which addresses specific circumstances: (i) competitive location of two facilities anywhere on the plane; (ii) covering a large area by chain facilities so that a future competitor will not be able to attract much demand; (iii) competitive location of two facilities applying the gravity (Huff) rule; (iv) competitive location of multiple facilities using the cover-based rule; and (v)locating facilities on the nodes of a network to cover as much demand as possible following a removal of a link by a follower.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Environmental Systems Research Institute, supplier of GIS software such as ArcGIS, ArcView.

References

  1. Aboolian, R., Berman, O., Krass, D.: Competitive facility location and design problem. Eur. J. Oper. Res. 182, 40–62 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aboolian, R., Berman, O., Krass, D.: Competitive facility location model with concave demand. Eur. J. Oper. Res. 181, 598–619 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aboolian, R., Berman, O., Krass, D.: Efficient solution approaches for discrete multi-facility competitive interaction model. Ann. Oper. Res. 167, 297–306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. An, Y., Zeng, B., Zhang, Y., Zhao, L.: Reliable p-median facility location problem: two-stage robust models and algorithms. Trans. Res. Part B Methodol. 64, 54–72 (2014)

    Article  Google Scholar 

  5. Averbakh, I., Berman, O., Krass, D., Kalcsics, J., Nickel, S.: Cooperative covering problems on networks. Networks 63, 334–349 (2014)

    Article  MathSciNet  Google Scholar 

  6. Batta, R., Dolan, J.M., Krishnamurthy, N.N.: The maximal expected covering location problem: revisited. Trans. Sci. 23, 277–287 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beasley, J.E.: OR-library – distributing test problems by electronic mail. J. Oper. Res. Soc. 41, 1069–1072 (1990). Also available athttp://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html.

  8. Beaumont, J.R.: GIS and market analysis. In: Maguire, D.J., Goodchild, M., Rhind, D. (eds.) Geographical Information Systems: Principles and Applications, pp. 139–151. Longman Scientific, Harlow (1991)

    Google Scholar 

  9. Bell, D.R., Ho, T.-H., Tang, C.S.: Determining where to shop: fixed and variable costs of shopping. J. Mark. Res. 35 (3), 352–369 (1998)

    Article  Google Scholar 

  10. Berman, O., Drezner, Z.: The multiple server location problem. J. Oper. Res. Soc. 58, 91–99 (2007)

    Article  MATH  Google Scholar 

  11. Berman, O., Krass, D.: Locating multiple competitive facilities: spatial interaction models with variable expenditures. Ann. Oper. Res. 111, 197–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berman, O., Krass, D.: The generalized maximal covering location problem. Comput. Oper. Res. 29, 563–591 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Berman, O., Drezner, Z., Wesolowsky, G.: Locating service facilities whose reliability is distance dependent. Comput. Oper. Res. 30, 1683–1695 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berman, O., Krass, D., Drezner, Z.: The gradual covering decay location problem on a network. Eur. J. Oper. Res. 151, 474–480 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Berman, O., Drezner, Z., Wesolowsky, G.O.: The facility and transfer points location problem. Int. Trans. Oper. Res. 12, 387–402 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Berman, O., Drezner, T., Drezner, Z., Wesolowsky, G.O.: A defensive maximal covering problem on a network. Int. Trans. Oper. Res. 16, 69–86 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Berman, O., Drezner, T., Drezner, Z., Krass, D.: Modeling competitive facility location problems: new approaches and results. In: Oskoorouchi, M. (ed.) TutORials in Operations Research, pp. 156–181. INFORMS, San Diego (2009)

    Google Scholar 

  18. Berman, O., Drezner, Z., Krass, D., Wesolowsky, G.O.: The variable radius covering problem. Eur. J. Oper. Res. 196, 516–525 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Berman, O., Drezner, Z., Krass, D.: Cooperative cover location problems: the planar case. IIE Trans. 42, 232–246 (2010)

    Article  Google Scholar 

  20. Berman, O., Drezner, Z., Krass, D.: Continuous covering and cooperative covering problems with a general decay function on networks. J. Oper. Res. Soc. 64, 1644–1653 (2013)

    Article  Google Scholar 

  21. Campbell, J.F.: Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72, 387–405 (1994)

    Article  MATH  Google Scholar 

  22. Carrizosa, E., Plastria, F.: Locating an undesirable facility by generalized cutting planes. Math. Oper. Res. 23, 680–694 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Church, R.L., Eaton, D.J.: Hierarchical location analysis using covering objectives. In: Ghosh, A., Rushton, G. (eds.) Spatial Analysis and Location-Allocation Models, pp. 163–185. Van Nostrand Reinhold Company, New York (1987)

    Google Scholar 

  24. Church, R.L., ReVelle, C.S.: The maximal covering location problem. Pap. Reg. Sci. Assoc. 32, 101–118 (1974)

    Article  Google Scholar 

  25. Church, R.L., Scaparra, M.P.: Protecting critical assets: the r-interdiction median problem with fortification. Geogr. Anal. 39, 129–146 (2007)

    Article  Google Scholar 

  26. Coxeter, H.S.M.: Regular Polytopes. Dover Publications, New York (1973)

    MATH  Google Scholar 

  27. Current, J., Daskin, M., Schilling, D.: Discrete network location models. In: Drezner, Z., Hamacher, H.W. (eds.) Facility Location: Applications and Theory, pp. 81–118. Springer, Berlin (2002)

    Chapter  Google Scholar 

  28. Dasci, A., Laporte, G.: A continuous model for multistore competitive location. Oper. Res. 53, 263–280 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Daskin, M.S.: A maximum expected covering location model: formulation, properties and heuristic solution. Trans. Sci. 17, 48–70 (1983)

    Article  Google Scholar 

  30. Daskin, M.S.: Network and Discrete Location: Models, Algorithms, and Applications. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  31. Daskin, M.S., Stern, E.H.: A hierarchical objective set covering model for emergency medical service vehicle deployment. Trans. Sci. 15, 137–152 (1981)

    Article  MathSciNet  Google Scholar 

  32. d’Aspremont, C., Gabszewicz, J.J., Thisse, J.-F.: On Hotelling’s stability in competition. Econometrica J. Econometric Soc. 47, 1145–1150 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  33. Drezner, Z.: Competitive location strategies for two facilities. Reg. Sci. Urban Econ. 12, 485–493 (1982)

    Article  Google Scholar 

  34. Drezner, Z.: Heuristic solution methods for two location problems with unreliable facilities. J. Oper. Res. Soc. 38, 509–514 (1987)

    Article  MATH  Google Scholar 

  35. Drezner, T.: Locating a single new facility among existing unequally attractive facilities. J. Reg. Sci. 34, 237–252 (1994)

    Article  Google Scholar 

  36. Drezner, T.: Optimal continuous location of a retail facility, facility attractiveness, and market share: An interactive model. J. Retail. 70, 49–64 (1994)

    Article  Google Scholar 

  37. Drezner, T.: Competitive facility location in the plane. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 285–300. Springer, New York (1995)

    Chapter  Google Scholar 

  38. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer, New York (1995)

    Book  Google Scholar 

  39. Drezner, T.: Location of multiple retail facilities with limited budget constraints – in continuous space. J. Retail. Consum. Serv. 5, 173–184 (1998)

    Article  Google Scholar 

  40. Drezner, T.: Derived attractiveness of shopping malls. IMA J. Manag. Math. 17, 349–358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Drezner, T.: Competitive facility location. In: Encyclopedia of Optimization, pp. 396–401, 2nd edn. Springer, New York (2009)

    Google Scholar 

  42. Drezner, Z.: Random selection from a stream of events. Commun. ACM 53, 158–159 (2010)

    Article  Google Scholar 

  43. Drezner, T.: Cannibalization in a competitive environment. Int. Reg. Sci. Rev. 34, 306–322 (2011)

    Article  Google Scholar 

  44. Drezner, T.: A review of competitive facility location in the plane. Logist. Res. 7, 114 (2014). doi:10.1007/s12159-014-0114-z.

    Article  Google Scholar 

  45. Drezner, T., Drezner, Z.: Competitive facilities: Market share and location with random utility. J. Reg. Sci. 36, 1–15 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Drezner, T., Drezner, Z.: Replacing discrete demand with continuous demand in a competitive facility location problem. Nav. Res. Logist. 44, 81–95 (1997)

    Article  MATH  Google Scholar 

  47. Drezner, T., Drezner, Z.: Facility location in anticipation of future competition. Locat. Sci. 6, 155–173 (1998)

    Article  Google Scholar 

  48. Drezner, T., Drezner, Z.: A note on applying the gravity rule to the airline hub problem. J. Reg. Sci. 41, 67–73 (2001)

    Article  Google Scholar 

  49. Drezner, T., Drezner, Z.: Validating the gravity-based competitive location model using inferred attractiveness. Ann. Oper. Res. 111, 227–237 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. Drezner, T., Drezner, Z.: Multiple facilities location in the plane using the gravity model. Geogr. Anal. 38, 391–406 (2006)

    Article  Google Scholar 

  51. Drezner, T., Drezner, Z.: The gravity p-median model. Eur. J. Oper. Res. 179, 1239–1251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Drezner, T., Drezner, Z.: Lost demand in a competitive environment. J. Oper. Res. Soc. 59, 362–371 (2008)

    Article  MATH  Google Scholar 

  53. Drezner, T., Drezner, Z.: The gravity multiple server location problem. Comput. Oper. Res. 38, 694–701 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Drezner, T., Drezner, Z.: Modelling lost demand in competitive facility location. J. Oper. Res. Soc. 63, 201–206 (2012)

    Article  Google Scholar 

  55. Drezner, T., Drezner, Z.: The maximin gradual cover location problem. OR Spectr. 36, 903–921 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Drezner, Z., Erkut, E.: Solving the continuous p-dispersion problem using non-linear programming. J. Oper. Res. Soc. 46, 516–520 (1995)

    Article  MATH  Google Scholar 

  57. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. Springer Science and Business Media, New York (2002)

    Book  MATH  Google Scholar 

  58. Drezner, Z., Suzuki, A.: Covering continuous demand in the plane. J. Oper. Res. Soc. 61, 878–881 (2010)

    Article  MATH  Google Scholar 

  59. Drezner, Z., Zemel, E.: Competitive location in the plane. Ann. Oper. Res. 40, 173–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  60. Drezner, Z., Wesolowsky, G.O., Drezner, T.: On the logit approach to competitive facility location. J. Reg. Sci. 38, 313–327 (1998)

    Article  Google Scholar 

  61. Drezner, Z., Wesolowsky, G.O., Drezner, T.: The gradual covering problem. Nav. Res. Logist. 51, 841–855 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. Drezner, T., Drezner, Z., Goldstein, Z.: A stochastic gradual cover location problem. Nav. Res. Logist. 57, 367–372 (2010)

    MathSciNet  MATH  Google Scholar 

  63. Drezner, T., Drezner, Z., Kalczynski, P.: A cover-based competitive location model. J. Oper. Res. Soc. 62, 100–113 (2011)

    Article  MATH  Google Scholar 

  64. Drezner, T., Drezner, Z., Kalczynski, P.: Strategic competitive location: improving existing and establishing new facilities. J. Oper. Res. Soc. 63, 1720–1730 (2012)

    Article  Google Scholar 

  65. Drezner, T., Drezner, Z., Kalczynski, P.: A leader-follower model for discrete competitive facility location. Comput. Oper. Res. 64, 51–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Eaton, B.C., Lipsey, R.G.: The principle of minimum differentiation reconsidered: some new developments in the theory of spatial competition. Rev. Econ. Stud. 42, 27–49 (1975)

    Article  MATH  Google Scholar 

  67. Eiselt, H.A.: Hotelling’s duopoly on a tree. Ann. Oper. Res. 40, 195–207 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  68. Eiselt, H.: Equilibria in competitive location models. In: Eiselt, H.A., Marianov, V. (eds.) Foundations of Location Analysis, pp. 139–162. Springer, New York (2011)

    Chapter  Google Scholar 

  69. Eiselt, H.A., Laporte, G.: The existence of equilibria in the 3-facility hotelling model in a tree. Trans. Sci. 27, 39–43 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  70. Eiselt, H.A., Marianov, V.: Foundations of Location Analysis, vol. 155. Springer, New York (2011)

    MATH  Google Scholar 

  71. Eiselt, H.A., Marianov, V., Drezner, T.: Competitive location models. In: Laporte, G., Nickel, S., da Gama, F.S. (eds.) Location Science, pp. 365–398. Springer, New York (2015)

    Google Scholar 

  72. Fernandez, J., Pelegrin, B., Plastria, F., Toth, B.: Solving a Huff-like competitive location and design model for profit maximization in the plane. Eur. J. Oper. Res. 179, 1274–1287 (2007)

    Article  MATH  Google Scholar 

  73. Francis, R.L., McGinnis, L.F. Jr., White, J.A.: Facility Layout and Location: An Analytical Approach, 2nd edn. Prentice Hall, Englewood Cliffs (1992)

    Google Scholar 

  74. Francis, R.L., Lowe, T.J., Rayco, M.B., Tamir, A.: Aggregation error for location models: survey and analysis. Ann. Oper. Res. 167, 171–208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  75. Gao, Z., Wu, J., Sun, H.: Solution algorithm for the bi-level discrete network design problem. Trans. Res. Part B Methodol. 39, 479–495 (2005)

    Article  Google Scholar 

  76. García, S., Marín, A.: Covering location problems. In: Laporte, G., Nickel, S., da Gama, F.S. (eds.) Location Science, pp. 93–114. Springer, New York (2015)

    Google Scholar 

  77. Ghosh, A., Craig, C.S.: Formulating retail location strategy in a changing environment. J. Mark. 47, 56–68 (1983)

    Article  Google Scholar 

  78. Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8, 156–166 (1977)

    Article  Google Scholar 

  79. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  80. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)

    Book  MATH  Google Scholar 

  81. Goodchild, M.F. Noronha, V.T.: Location-allocation and impulsive shopping: the case of gasoline retailing. In: Spatial Analysis and Location-Allocation Models, pp. 121–136. Van Nostrand Reinhold, New York (1987)

    Google Scholar 

  82. Hakimi, S.L.: Optimum locations of switching centres and the absolute centres and medians of a graph. Oper. Res. 12, 450–459 (1964)

    Article  MATH  Google Scholar 

  83. Hakimi, S.L.: Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 13, 462–475 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  84. Hakimi, S.L.: On locating new facilities in a competitive environment. In: Presented at the ISOLDE II Conference, Skodsborg, Denmark (1981)

    MATH  Google Scholar 

  85. Hakimi, S.L.: On locating new facilities in a competitive environment. Eur. J. Oper. Res. 12, 29–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  86. Hakimi, S.L.: p-Median theorems for competitive location. Ann. Oper. Res. 6, 77–98 (1986)

    Google Scholar 

  87. Hakimi, S.L.: Locations with spatial interactions: Competitive locations and games. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete Location Theory, pp. 439–478. Wiley-Interscience, New York (1990)

    Google Scholar 

  88. Hansen, P., Labbè, M.: Algorithms for voting and competitive location on a network. Trans. Sci. 22, 278–288 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  89. Hilbert, D., Cohn-Vossen, S.: Geometry and the Imagination. Chelsea Publishing Company, New York (1956). English translation of Anschauliche Geometrie (1932)

    Google Scholar 

  90. Hodgson, M.: Toward more realistic allocation in location-allocation models: an interaction approach. Environ. Plan. A 10, 1273–1285 (1978)

    Article  Google Scholar 

  91. Hodgson, M.J.: A location-allocation model maximizing consumers’ welfare. Reg. Stud. 15, 493–506 (1981)

    Article  Google Scholar 

  92. Hotelling, H.: Stability in competition. Econ. J. 39, 41–57 (1929)

    Google Scholar 

  93. Huff, D.L.: Defining and estimating a trade area. J. Mark. 28, 34–38 (1964)

    Article  Google Scholar 

  94. Huff, D.L.: A programmed solution for approximating an optimum retail location. Land Econ. 42, 293–303 (1966)

    Article  Google Scholar 

  95. Jain, A.K., Mahajan, V.: Evaluating the competitive environment in retailing using multiplicative competitive interactive models. In: Sheth, J.N. (ed.) Research in Marketing, vol. 2, pp. 217–235. JAI Press, Greenwich (1979)

    Google Scholar 

  96. Jensen, M.C.: Value maximization and the corporate objective function. In: Beer, M., Norhia, N. (ed.) Breaking the Code of Change, pp. 37–57. Harvard Business School Press, Boston (2000)

    Google Scholar 

  97. Kirkpatrick, S., Gelat, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  98. Kolen, A., Tamir, A.: Covering problems. In: Mirchandani, P.B., Francis, R.L. (ed.) Discrete Location Theory, pp. 263–304. Wiley-Interscience, New York (1990)

    Google Scholar 

  99. Küçükaydın, H., Aras, N., Altınel, I.: A leader–follower game in competitive facility location. Comput. Oper. Res. 39, 437–448 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  100. Laporte, G., Nickel, S., da Gama, F.S.: Location Science. Springer, New York (2015)

    Google Scholar 

  101. Lee, S.-D.: On solving unreliable planar location problems. Comput. Oper. Res. 28, 329–344 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  102. Leonardi, G., Tadei, R.: Random utility demand models and service location. Reg. Sci. Urban Econ. 14, 399–431 (1984)

    Article  Google Scholar 

  103. Lerner, A.P., Singer, H.W.: Some notes on duopoly and spatial competition. J. Polit. Econ. 45, 145–186 (1937)

    Article  Google Scholar 

  104. Locatelli, M., Raber, U.: Packing equal circles in a square: a deterministic global optimization approach. Discret. Appl. Math. 122, 139–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  105. Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities Location: Models and Methods. North Holland, New York (1988)

    MATH  Google Scholar 

  106. Maranas, C.D., Floudas, C.A., Pardalos, P.M.: New results in the packing of equal circles in a square. Discret. Math. 142, 287–293 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  107. Nakanishi, M., Cooper, L.G.: Parameter estimate for multiplicative interactive choice model: least squares approach. J. Mark. Res. 11, 303–311 (1974)

    Article  Google Scholar 

  108. Nash, J.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  109. Nurmela, K.J., Oestergard, P.: More optimal packings of equal circles in a square. Discret. Comput. Geom. 22, 439–457 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  110. O’Hanley, J.R., Church, R.L.: Designing robust coverage networks to hedge against worst-case facility losses. Eur. J. Oper. Res. 209, 23–36 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  111. O’Hanley, J.R., Church, R.L., Gilless, J.K.: Locating and protecting critical reserve sites to minimize expected and worst-case losses. Biol. Conserv. 134, 130–141 (2007)

    Article  Google Scholar 

  112. Okabe, A., Suzuki, A.: Locational optimization problems solved through Voronoi diagrams. Eur. J. Oper. Res. 98, 445–456 (1997)

    Article  MATH  Google Scholar 

  113. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  114. Plastria, F.: Continuous covering location problems. In: Drezner, Z., Hamacher, H.W. (ed.) Facility Location: Applications and Theory, pp. 37–79. Springer, Berlin (2002)

    Chapter  Google Scholar 

  115. Plastria, F., Carrizosa, E.: Undesirable facility location in the Euclidean plane with minimal covering objectives. Eur. J. Oper. Res. 119, 158–180 (1999)

    Article  MATH  Google Scholar 

  116. Plastria, F., Carrizosa, E.: Optimal location and design of a competitive facility. Math. Program. 100, 247–265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  117. Plastria, F., Vanhaverbeke, L.: Aggregation without loss of optimality in competitive location models. Netw. Spat. Econ. 7, 3–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  118. Plastria, F., Vanhaverbeke, L.: Discrete models for competitive location with foresight. Comput. Oper. Res. 35, 683–700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  119. Redondo, J.L., Fernández, J., García, I., Ortigosa, P.M.: Heuristics for the facility location and design (1 | 1)-centroid problem on the plane. Comput. Optim. Appl. 45, 111–141 (2010)

    Google Scholar 

  120. Redondo, J.L., Fernández, J., Arrondo, A., García, I., Ortigosa, P.M.: Fixed or variable demand? does it matter when locating a facility? Omega 40, 9–20 (2012)

    Article  Google Scholar 

  121. Redondo, J.L., Arrondo, A., Fernández, J., García, I., Ortigosa, P.M.: A two-level evolutionary algorithm for solving the facility location and design (1 | 1)-centroid problem on the plane with variable demand. J. Glob. Optim. 56, 983–1005 (2013)

    Google Scholar 

  122. Reilly, W.J.: The Law of Retail Gravitation. Knickerbocker Press, New York (1931)

    Google Scholar 

  123. ReVelle, C.: The maximum capture or sphere of influence problem: Hotelling revisited on a network. J. Reg. Sci. 26, 343–357 (1986)

    Article  Google Scholar 

  124. ReVelle, C., Toregas, C., Falkson, L.: Applications of the location set covering problem. Geogr. Anal. 8, 65–76 (1976)

    Article  Google Scholar 

  125. Saidani, N., Chu, F., Chen, H.: Competitive facility location and design with reactions of competitors already in the market. Eur. J. Oper. Res. 219, 9–17 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  126. Sáiz, M.E., Hendrix, E.M., Fernández, J., Pelegrín, B.: On a branch-and-bound approach for a Huff-like Stackelberg location problem. OR Spectr. 31, 679–705 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  127. Scaparra, M.P., Church, R.L.: A bilevel mixed-integer program for critical infrastructure protection planning. Comput. Oper. Res. 35, 1905–1923 (2008)

    Article  MATH  Google Scholar 

  128. Schilling, D.A., Vaidyanathan, J., Barkhi, R.: A review of covering problems in facility location. Locat. Sci. 1, 25–55 (1993)

    MATH  Google Scholar 

  129. Shishebori, D., Babadi, A.Y.: Robust and reliable medical services network design under uncertain environment and system disruptions. Trans. Res. Part E Logist. Trans. Rev. 77, 268–288 (2015)

    Article  Google Scholar 

  130. Shishebori, D., Snyder, L.V., Jabalameli, M.S.: A reliable budget-constrained FL/ND problem with unreliable facilities. Netw. Spat. Econ. 14, 549–580 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  131. Simpson, P.B.: On defining areas of voter choice: professor tullock on stable voting. Q. J. Econ. 83, 478–490 (1969)

    Article  Google Scholar 

  132. Snyder, L.V.: Covering problems. In: Eiselt, H.A., Marianov, V. (eds.) Foundations of Location Analysis, pp. 109–135. Springer, New York (2011)

    Chapter  Google Scholar 

  133. Snyder, L.V., Daskin, M.S.: Reliability models for facility location: the expected failure cost case. Trans. Sci. 39, 400–416 (2005)

    Article  Google Scholar 

  134. Snyder, L., Daskin, M.: Models for reliable supply chain networks design. In: Murray, A., Grubesic, T. (eds.) Reliability and Vulnerability in Critical Infrastructure: A Quantitative Geographic Perspective. Springer, Berlin (2006)

    Google Scholar 

  135. Snyder, L., Scaparra, M., Daskin, M., Church, R.: Planning for disruptions in supply chain networks. Tutor. Oper. Res. 234–257 (2006)

    Google Scholar 

  136. Stackelberg, H.V.: Marktform und Gleichgewicht. Julius Springer, Vienne (1934)

    Google Scholar 

  137. Sun, H., Gao, Z., Wu, J.: A bi-level programming model and solution algorithm for the location of logistics distribution centers. Appl. Math. Model. 32, 610–616 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  138. Suzuki, A., Drezner, Z.: The p-center location problem in an area. Locat. Sci. 4, 69–82 (1996)

    Article  MATH  Google Scholar 

  139. Suzuki, A., Drezner, Z.: The minimum equitable radius location problem with continuous demand. Eur. J. Oper. Res. 195, 17–30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  140. Suzuki, A., Okabe, A.: Using Voronoi diagrams. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 103–118. Springer, New York (1995)

    Chapter  Google Scholar 

  141. Szabo, P.G., Markot, M., Csendes, T., Specht, E.: New Approaches to Circle Packing in a Square: With Program Codes. Springer, New York (2007)

    MATH  Google Scholar 

  142. Tavakkoli-Mogahddam, R., Ghezavati, V., Kaboli, A., Rabbani, M.: An efficient hybrid method for an expected maximal covering location problem. In: New Challenges in Applied Intelligence Technologies, pp. 289–298. Springer, New York (2008)

    Google Scholar 

  143. Toppen, F., Wapenaar, H.: GIS in business: tools for marketing analysis. Proc. EGIS 1994, EGIS Foundation (1994) www.odyssey.maine.edu/gisweb/spatab/egis/eg94204.html

  144. Toth, B., Fernandez, J., Pelegrin, B., Plastria, F.: Sequential versus simultaneous approach in the location and design of two new facilities using planar Huff-like models. Comput. Oper. Res. 36, 1393–1405 (2009)

    Article  MATH  Google Scholar 

  145. Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. recherches sur les parallélloèdres primitifs. J. Reine Angew. Math. 134, 198–287 (1908)

    MathSciNet  MATH  Google Scholar 

  146. Wendell, R., McKelvey, R.: New perspectives in competitive location theory. Eur. J. Oper. Res. 6, 174–182 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  147. Wilson, A.G.: Retailers’ profits and consumers’ welfare in a spatial interaction shopping mode. In: Masser, I. (ed.) Theory and Practice in Regional Science, pp. 42–59. Pion, London (1976)

    Google Scholar 

  148. Winerfert, B.: The relation between market share and profitability. J. Bus. Strategy 6, 67–74 (1986)

    Article  Google Scholar 

  149. Wollmer, R.: Removing arcs from a network. Oper. Res. 12, 934–940 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  150. Wong, S.-C., Yang, H.: Determining market areas captured by competitive facilities: a continuous equilibrium modeling approach. J. Reg. Sci. 39, 51–72 (1999)

    Article  Google Scholar 

  151. Wood, R.K.: Deterministic network interdiction. Math. Comput. Model. 17, 1–18 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  152. Yang, H., Wong, S.: A continuous equilibrium model for estimating market areas of competitive facilities with elastic demand and market externality. Trans. Sci. 34, 216–227 (2000)

    Article  MATH  Google Scholar 

  153. Zabinsky, Z.B., Smith, R.L.: Pure adaptive search in global optimization. Math. Prog. 53, 323–338 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tammy Drezner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Drezner, T., Drezner, Z. (2017). Leader-Follower Models in Facility Location. In: Mallozzi, L., D'Amato, E., Pardalos, P. (eds) Spatial Interaction Models . Springer Optimization and Its Applications, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-52654-6_5

Download citation

Publish with us

Policies and ethics