Skip to main content

Sparse Learning and Hybrid Probabilistic Oversampling for Alzheimer’s Disease Diagnosis

  • Conference paper
  • First Online:
Proceedings of the 16th International Conference on Hybrid Intelligent Systems (HIS 2016) (HIS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 552))

Included in the following conference series:

  • 1070 Accesses

Abstract

Alzheimers Disease (AD) is the most common neurodegenerative disorder associated with aging. Early diagnosis of AD is key to the development, assessment, and monitoring of new treatments for AD. Machine learning approaches are increasingly being applied on the diagnosis of AD from structural MRI. However, the high feature-dimension and imbalanced data learning problem is two major challenges in the study of computer aided AD diagnosis. To circumvent this problem, we propose a novel formulation with hinge loss and sparse group lasso to select the discriminative features since features exhibit certain intrinsic group structures, then we propose a hybrid probabilistic oversampling to alleviate the class imbalanced distribution. Extensive experiments were conducted to compare this method against the baseline and the state-of-the-art methods, and the results illustrated that this proposed method is more effective for diagnosis of AD compared to commonly used techniques.

P. Cao–Supported in part by National Natural Science Foundation of China (61502091).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brookmeyer, R., Johnson, E., Ziegler-Graham, K.: Forecasting the global burden of Alzheimers disease. Alzheimer’s Dement. 3(3), 186–191 (2007)

    Article  Google Scholar 

  2. Zhu, X., Suk, H., Shen, D.: Subspace regularized sparse multi-task learning for multi-class neurodegenerative disease identification. IEEE Trans. Biomed. Eng. 63(3), 607–618 (2015)

    Article  Google Scholar 

  3. Peng, X., Lin, P., Zhang, T., Wang, J.: Extreme learning machine-based classification of ADHD using brain structural MRI data. PloS One 8(11), e79476 (2013)

    Article  Google Scholar 

  4. Dubey, R., Zhou, J., Wang, Y., Thompson, P.M., Ye, J., et al.: Analysis of sampling techniques for imbalanced data: an n = 648 ADNI study. NeuroImage 87, 220–241 (2014)

    Article  Google Scholar 

  5. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  6. Cao, P., Zhao, D., Zaiane, O.: An optimized cost-sensitive SVM for imbalanced data learning. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 280–292. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37456-2_24

    Chapter  Google Scholar 

  7. Weiss, G.: The impact of small disjuncts on classifier learning. Ann. Inf. Syst. 5(8), 193–226 (2010)

    Article  Google Scholar 

  8. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. B (Stat. Methodol.) 68(1), 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beck, A.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, F., Zhou, L., Shen, C., Yin, J.: Multiple Kernel learning in the primal for multimodal Alzheimers disease classification. IEEE J. Biomed. Health Inform. 18(3), 984–990 (2014)

    Article  Google Scholar 

  11. Hinrichs, C., Singh, V., Peng, J., Johnson, S.: Q-mkl: matrix-induced regularization in multi-kernel learning with applications to neuroimaging. In: Advances in Neural Information Processing Systems, pp. 1421–1429 (2012)

    Google Scholar 

  12. Gu, B., Sheng, V.S.: A robust regularization path algorithm for \(\nu \)-support vector classification. IEEE Trans. Neural Netw. Learn. Syst. (99), 1–8 (2016)

    Google Scholar 

  13. Gu, B., Sheng, V.S., Wang, Z., Ho, D., Osman, S., Li, S.: Incremental learning for \(\nu \)-support vector regression. Neural Networks 67, 140–150 (2015)

    Article  Google Scholar 

  14. Ye, J., Liu, J.: Sparse methods for biomedical data. ACM Sigkdd Explor. Newsl. 14(1), 4–15 (2012)

    Article  MathSciNet  Google Scholar 

  15. Maldonado, S., Weber, R., Famili, F.: Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines. Inf. Sci. 286, 228–246 (2014)

    Article  Google Scholar 

  16. Yuan, L., Liu, J., Ye, J.: Efficient methods for overlapping group lasso. In: Advances in Neural Information Processing Systems, pp. 352–360 (2011)

    Google Scholar 

  17. Liu, J., Ye, J.: Moreau-Yosida regularization for grouped tree structure learning. In: Advances in Neural Information Processing Systems, pp. 1459–1467 (2010)

    Google Scholar 

  18. Figueiredo, M.A.T., Jain, A.K., Doi, K.: Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 381–396 (2002)

    Article  Google Scholar 

  19. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wan, J., Zhang, Z., Rao, B.D., Fang, S., Yan, J., Saykin, A.J., Shen, L.: Identifying the neuroanatomical basis of cognitive impairment in Alzheimer’s disease by correlation-and nonlinearity-aware sparse Bayesian learning. IEEE Trans. Med. Imaging 33(7), 1475–1487 (2014)

    Article  Google Scholar 

  21. Weiner, M.W., Aisen, P.S., Jack, C.R., Jagust, W.J., et al.: The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimers Dement. 6, 202–211 (2010)

    Article  Google Scholar 

  22. Ye, J., Farnum, M., Yang, E., Verbeeck, R., et al.: Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC Neurol. 12(46), 1–12 (2012)

    Google Scholar 

  23. Lebedev, A.V., Westman, E., Van Westen, G.J.P., Kramberger, M.G., et al.: Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness. NeuroImage: Clin. 6, 115–125 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (61502091), the Fundamental Research Funds for the Central Universities (N140403004), and the Postdoctoral Science Foundation of China (2015M570254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cao, P., Liu, X., Zhao, D., Zaiane, O. (2017). Sparse Learning and Hybrid Probabilistic Oversampling for Alzheimer’s Disease Diagnosis. In: Abraham, A., Haqiq, A., Alimi, A., Mezzour, G., Rokbani, N., Muda, A. (eds) Proceedings of the 16th International Conference on Hybrid Intelligent Systems (HIS 2016). HIS 2016. Advances in Intelligent Systems and Computing, vol 552. Springer, Cham. https://doi.org/10.1007/978-3-319-52941-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52941-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52940-0

  • Online ISBN: 978-3-319-52941-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics