Skip to main content

Quantification of Regional Ventricular Wall Motion in Laboratory Animals

  • Chapter
  • First Online:
Protocols and Methodologies in Basic Science and Clinical Cardiac MRI
  • 1030 Accesses

Abstract

Cardiac magnetic resonance (CMR) imaging offers a versatile tool for noninvasive evaluation of various aspects of cardiac structure and function, from fiber orientation to mitochondrial metabolism. Parameters that describe regional myocardial wall mechanics have been shown to be more sensitive biomarkers of early-stage functional alterations than global functional indices. Over the last three decades, several CMR techniques have been developed for quantification of regional myocardial wall mechanics. These techniques have greatly improved our understanding of myocardial wall mechanics, as well as the development of ventricular dysfunction in disease progression. Even more remarkable are the applications of these techniques to genetically modified mouse models of cardiac diseases, which have provided new insights into the molecular mechanisms of functional alterations and disease progression. In this chapter, we will mainly focus on the two extensively used and closely related CMR techniques, i.e., tissue tagging and displacement encoding with stimulated echoes (DENSE), and an important post-processing technique, the harmonic phase (HARP) analysis method, for semi-automated analysis of tagged images. Other CMR techniques, including strain encoding and phase velocity imaging, will also be briefly introduced. In the last section of the chapter, the applications of these techniques in the investigation of several cardiovascular diseases using laboratory animals will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ADC:

Analog-to-digital converter

CANSEL:

Cosine and sine modulation to eliminate

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane conductance regulator

CMR:

Cardiac magnetic resonance

cMyBPC:

Cardiac myosin binding protein C

CNR:

Contrast-to-noise ratio

CSPAMM:

Complementary spatial modulation of magnetization

DANTE:

Delay alternating with nutations for tailored excitation

DENSE:

Displacement encoding with stimulated echoes

ECG:

Electrocardiogram

FE:

Frequency-encoding

HARP:

Harmonic phase

HCM:

Hypertrophic cardiomyopathy

LAD:

Left anterior descending

LV:

Left-ventricular

MI:

Myocardial infarction

MRI:

Magnetic resonance imaging

PE:

Phase-encoding

PKC-ε:

Cardiac specific protein kinase C-ε

RF:

Radio-frequency

SENC:

Strain-encoded

SNR:

Signal-to-noise ratio

SPAMM:

Spatial modulation of magnetization

SS:

Slice-selection

References

  1. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging – a method for noninvasive assessment of myocardial motion. Radiology. 1988;169:59–63.

    Article  CAS  PubMed  Google Scholar 

  2. Axel L, Dougherty L. MR imaging of motion with spatial modulation of magnetization. Radiology. 1989;171:841–5.

    Article  CAS  PubMed  Google Scholar 

  3. Axel L, Dougherty L. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology. 1989;172:349–50.

    Article  CAS  PubMed  Google Scholar 

  4. Aletras AH, Ding S, Balaban RS, Wen H. DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson. 1999;137:247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reese TG, Feinberg DA, Dou J, Wedeen VJ. Phase contrast MRI of myocardial 3D strain by encoding contiguous slices in a single shot. Magn Reson Med. 2002;47:665–76.

    Article  PubMed  Google Scholar 

  6. Osman NF, Sampath S, Atalar E, Prince JL. Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn Reson Med. 2001;46:324–34.

    Article  CAS  PubMed  Google Scholar 

  7. Butz GM, Davisson RL. Long-term telemetric measurement of cardiovascular parameters in awake mice: a physiological genomics tool. Physiol Genomics. 2001;5:89–97.

    CAS  PubMed  Google Scholar 

  8. Constantinides C, Mean R, Janssen BJ. Effects of isoflurane anesthesia on the cardiovascular function of the C57BL/6 mouse. ILAR J. 2011;52:e21–31.

    PubMed  PubMed Central  Google Scholar 

  9. Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 1969;24:339–47.

    Article  PubMed  Google Scholar 

  10. Armour JA, Randall WC. Structural basis for cardiac function. Am J Phys. 1970;218:1517–23.

    CAS  Google Scholar 

  11. Taber LA, Yang M, Podszus WW. Mechanics of ventricular torsion. J Biomech. 1996;29:745–52.

    Article  CAS  PubMed  Google Scholar 

  12. Ashford MW, Liu W, Lin SJ, Abraszewski P, Caruthers SD, Connolly AM, Yu X, Wickline SA. Occult cardiac contractile dysfunction in dystrophin-deficient children revealed by cardiac magnetic resonance strain imaging. Circulation. 2005;112:2462–7.

    Article  PubMed  Google Scholar 

  13. Chung J, Abraszewski P, Yu X, Liu W, Krainik AJ, Ashford M, Caruthers SD, McGill JB, Wickline SA. Paradoxical increase in ventricular torsion and systolic torsion rate in type I diabetic patients under tight glycemic control. J Am Coll Cardiol. 2006;47:384–90.

    Article  PubMed  Google Scholar 

  14. Burns AT, McDonald IG, Thomas JD, Macisaac A, Prior D. Doin’ the twist: new tools for an old concept of myocardial function. Heart. 2008;94:978–83.

    Article  CAS  PubMed  Google Scholar 

  15. Shehata ML, Cheng S, Osman NF, Bluemke DA, Lima JA. Myocardial tissue tagging with cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2009;11:55.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Edvardsen T, Rosen BD, Pan L, Jerosch-Herold M, Lai S, Hundley WG, Sinha S, Kronmal RA, Bluemke DA, Lima JAC. Regional diastolic dysfunction in individuals with left ventricular hypertrophy measured by tagged magnetic resonance imaging – the Multi-Ethnic Study of Atherosclerosis (MESA). Am Heart J. 2006;151:109–14.

    Article  PubMed  Google Scholar 

  17. Mosher TJ, Smith MB. A DANTE tagging sequence for the evaluation of translational sample motion. Magn Reson Med. 1990;15:334–9.

    Article  CAS  PubMed  Google Scholar 

  18. Wehrens XHT, Kirchhoff S, Doevendans PA. Mouse electrocardiography: an interval of thirty years. Cardiovasc Res. 2000;45:231–7.

    Article  CAS  PubMed  Google Scholar 

  19. Moore CC, Lugo-Olivieri CH, McVeigh ER, Zerhouni EA. Three-dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged MR imaging. Radiology. 2000;214:453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhong J, Liu W, Yu X. Characterization of three-dimensional myocardial deformation in the mouse heart: an MR tagging study. J Magn Reson Imaging. 2008;27:1263–70.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Axel L, Gonçalves RC, Bloomgarden D. Regional heart wall motion: two-dimensional analysis and functional imaging with MR imaging. Radiology. 1992;183:745–50.

    Article  CAS  PubMed  Google Scholar 

  22. Guttman MA, Prince JL, McVeigh ER. Tag and contour detection in tagged MR images of the left ventricle. IEEE Trans Med Imaging. 1994;13:74–88.

    Article  CAS  PubMed  Google Scholar 

  23. Bundy JM, Lorenz CH. Tagasist: a post-processing and analysis tools package for tagged magnetic resonance imaging. Comput Med Imaging Graph. 1997;21:225–32.

    Article  CAS  PubMed  Google Scholar 

  24. Liu W, Ashford MW, Chen J, Watkins MP, Williams TA, Wickline SA, Yu X. MR tagging demonstrates quantitative differences in regional ventricular wall motion in mice, rats, and men. Am J Physiol Heart Circ Physiol. 2006;291:H2515–21.

    Article  CAS  PubMed  Google Scholar 

  25. Moore CC, O’Dell WG, McVeigh ER, Zerhouni EA. Calculation of three-dimensional left ventricular strains from biplanar tagged MR images. J Magn Reson Imaging. 1992;2:165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fogel MA, Gupta KB, Weinberg PM, Hoffman EA. Regional wall motion and strain analysis across stages of Fontan reconstruction by magnetic resonance tagging. Am J Phys. 1995;269:H1132–52.

    CAS  Google Scholar 

  27. Young AA. Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images. Med Image Anal. 1999;3:361–72.

    Article  CAS  PubMed  Google Scholar 

  28. Hu Z, Metaxas D, Axel L. In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Med Image Anal. 2003;7:435–44.

    Article  PubMed  Google Scholar 

  29. Pipe JG, Boes JL, Chenevert TL. Method for measuring three-dimensional motion with tagged MR imaging. Radiology. 1991;181:591–5.

    Article  CAS  PubMed  Google Scholar 

  30. O’Dell WG, Moore CC, Hunter WC, Zerhouni EA, McVeigh ER. Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology. 1995;195:829–35.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kuijer JP, Marcus JT, Götte MJ, van Rossum AC, Heethaar RM. Three-dimensional myocardial strain analysis based on short- and long-axis magnetic resonance tagged images using a 1D displacement field. Magn Reson Imaging. 2000;18:553–64.

    Article  CAS  PubMed  Google Scholar 

  32. Chen Y, Amini AA. A MAP framework for tag line detection in SPAMM data using Markov random fields on the B-spline solid. IEEE Trans Med Imaging. 2002;21:1110–22.

    Article  PubMed  Google Scholar 

  33. Huang J, Abendschein D, Dávila-Román VG, Amini AA. Spatio-temporal tracking of myocardial deformations with a 4-D B-spline model from tagged MRI. IEEE Trans Med Imaging. 1999;18:957–72.

    Article  CAS  PubMed  Google Scholar 

  34. Wang YP, Chen Y, Amini AA. Fast LV motion estimation using subspace approximation techniques. IEEE Trans Med Imaging. 2001;20:499–513.

    Article  CAS  PubMed  Google Scholar 

  35. Amini AA, Chen Y, Elayyadi M, Radeva P. Tag surface reconstruction and tracking of myocardial beads from SPAMM-MRI with parametric B-spline surfaces. IEEE Trans Med Imaging. 2001;20:94–103.

    Article  CAS  PubMed  Google Scholar 

  36. Tustison NJ, Dávila-Román VG, Amini AA. Myocardial kinematics from tagged MRI based on a 4-D B-spline model. IEEE Trans Biomed Eng. 2003;50:1038–40.

    Article  PubMed  Google Scholar 

  37. Osman NF, Kerwin WS, McVeigh ER, Prince JL. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med. 1999;42:1048–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Osman NF, Prince JL. Regenerating MR tagged images using harmonic phase (HARP) methods. IEEE Trans Biomed Eng. 2004;51:1428–33.

    Article  PubMed  Google Scholar 

  39. Osman NF, McVeigh ER, Prince JL. Imaging heart motion using harmonic phase MRI. IEEE Trans Med Imaging. 2000;19:186–202.

    Article  CAS  PubMed  Google Scholar 

  40. Osman NF, Prince JL. Visualizing myocardial function using HARP MRI. Phys Med Biol. 2000;45:1665–82.

    Article  CAS  PubMed  Google Scholar 

  41. Liu W, Chen J, Ji S, Allen JS, Bayly PV, Wickline SA, Yu X. Harmonic phase MR tagging for direct quantification of Lagrangian strain in rat hearts after myocardial infarction. Magn Reson Med. 2004;52:1282–90.

    Article  PubMed  Google Scholar 

  42. Valeti VU, Chun W, Potter DD, Araoz PA, McGee KP, Glockner JF, Christian TF. Myocardial tagging and strain analysis at 3 Tesla: comparison with 1.5 Tesla imaging. J Magn Reson Imaging. 2006;23:477–80.

    Article  PubMed  Google Scholar 

  43. Herzka DA, Guttman MA, McVeigh ER. Myocardial tagging with SSFP. Magn Reson Med. 2003;49:329–40.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pattynama PM, Doornbos J, Hermans J, van der Wall EE, de Roos A. Magnetic resonance evaluation of regional left ventricular function. Effect of through-plane motion. Invest. Radiology. 1992;27:681–5.

    CAS  Google Scholar 

  45. Brotman D, Zhang Z, Sampath S. Effect of through-plane motion on left ventricular rotation: a study using slice-following harmonic phase imaging. Magn Reson Med. 2013;69:1421–9.

    Article  PubMed  Google Scholar 

  46. Fischer SE, McKinnon GC, Maier SE, Boesiger P. Improved myocardial tagging contrast. Magn Reson Med. 1993;30:191–200.

    Article  CAS  PubMed  Google Scholar 

  47. Fischer SE, McKinnon GC, Scheidegger MB, Prins W, Meier D, Boesiger P. True myocardial motion tracking. Magn Reson Med. 1994;31:401–13.

    Article  CAS  PubMed  Google Scholar 

  48. Gilson WD, Yang Z, French BA, Epstein FH. Complementary displacement-encoded MRI for contrast-enhanced infarct detection and quantification of myocardial function in mice. Magn Reson Med. 2004;51:744–52.

    Article  PubMed  Google Scholar 

  49. Gilson WD, Yang Z, French BA, Epstein FH. Measurement of myocardial mechanics in mice before and after infarction using multislice displacement-encoded MRI with 3D motion encoding. Am J Physiol Heart Circ Physiol. 2005;288:H1491–7.

    Article  CAS  PubMed  Google Scholar 

  50. Zhong J, Yu X. Strain and torsion quantification in mouse hearts under dobutamine stimulation using 2D multiphase MR DENSE. Magn Reson Med. 2010;64:1315–22.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ghiglia DC, Pritt MD. Two-dimensional phase unwrapping: theory, algorithms, and software. New York: Wiley; 1998.

    Google Scholar 

  52. Aletras AH, Wen H. Mixed echo train acquisition displacement encoding with stimulated echoes: an optimized DENSE method for in vivo functional imaging of the human heart. Magn Reson Med. 2001;46:523–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Epstein FH, Gilson WD. Displacement-encoded cardiac MRI using cosine and sine modulation to eliminate (CANSEL) artifact-generating echoes. Magn Reson Med. 2004;52:774–81.

    Article  PubMed  Google Scholar 

  54. Aletras AH, Ingkanisorn WP, Mancini C, Arai AE. DENSE with SENSE. J Magn Reson. 2005;176:99–106.

    Article  CAS  PubMed  Google Scholar 

  55. Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr. 1984;8:588–93.

    Article  CAS  PubMed  Google Scholar 

  56. van Dijk P. Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr. 1984;8:429–36.

    Article  PubMed  Google Scholar 

  57. Arai AE, Gaither CC, Epstein FH, Balaban RS, Wolff SD. Myocardial velocity gradient imaging by phase contrast MRI with application to regional function in myocardial ischemia. Magn Reson Med. 1999;42:98–109.

    Article  CAS  PubMed  Google Scholar 

  58. Delfino JG, Johnson KR, Eisner RL, Eder S, Leon AR, Oshinski JN. Three-directional myocardial phase-contrast tissue velocity MR imaging with navigator-echo gating: in vivo and in vitro study. Radiology. 2008;246:917–25.

    Article  PubMed  Google Scholar 

  59. Jung BA, Kreher BW, Markl M, Hennig J. Visualization of tissue velocity data from cardiac wall motion measurements with myocardial fiber tracking: principles and implications for cardiac fiber structures. Eur J Cardiothorac Surg. 2006;29(Suppl 1):S158–64.

    Article  PubMed  Google Scholar 

  60. Beache GM, Wedeen VJ, Weisskoff RM, O’Gara PT, Poncelet BP, Chesler DA, Brady TJ, Rosen BR, Dinsmore RE. Intramural mechanics in hypertrophic cardiomyopathy: functional mapping with strain-rate MR imaging. Radiology. 1995;197:117–24.

    Article  CAS  PubMed  Google Scholar 

  61. Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr. J Comput Assist Tomogr.1986;10:715–22.

    Article  CAS  PubMed  Google Scholar 

  62. Neizel M, Korosoglou G, Lossnitzer D, Kühl H, Hoffmann R, Ocklenburg C, Giannitsis E, Osman NF, Katus HA, Steen H. Impact of systolic and diastolic deformation indexes assessed by strain-encoded imaging to predict persistent severe myocardial dysfunction in patients after acute myocardial infarction at follow-up. J Am Coll Cardiol. 2010;56:1056–62.

    Article  PubMed  Google Scholar 

  63. Korosoglou G, Lossnitzer D, Schellberg D, et al. Strain-encoded cardiac MRI as an adjunct for dobutamine stress testing: incremental value to conventional wall motion analysis. Circ Cardiovasc Imaging. 2009;2:132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Korosoglou G, Lehrke S, Wochele A, Hoerig B, Lossnitzer D, Steen H, Giannitsis E, Osman NF, Katus HA. Strain-encoded CMR for the detection of inducible ischemia during intermediate stress. JACC Cardiovasc Imaging. 2010;3:361–71.

    Article  PubMed  Google Scholar 

  65. Epstein FH. MR in mouse models of cardiac disease. NMR Biomed. 2007;20:238–55.

    Article  PubMed  Google Scholar 

  66. Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A, Khandheria BK. Left ventricular structure and function: basic science for cardiac imaging. J Am Coll Cardiol. 2006;48:1988–2001.

    Article  PubMed  Google Scholar 

  67. Kuijer JPA, Marcus JT, Götte MJW, van Rossum AC, Heethaar RM. Three-dimensional myocardial strains at end-systole and during diastole in the left ventricle of normal humans. J Cardiovasc Magn Reson. 2002;4:341–51.

    Article  PubMed  Google Scholar 

  68. Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N. Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation. 1994;90:854–67.

    Article  CAS  PubMed  Google Scholar 

  69. Rademakers FE, Rogers WJ, Guier WH, Hutchins GM, Siu CO, Weisfeldt ML, Weiss JL, Shapiro EP. Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation. 1994;89:1174–82.

    Article  CAS  PubMed  Google Scholar 

  70. Aletras AH, Tilak GS, Natanzon A, Hsu LY, Gonzalez FM, Hoyt RF, Arai AE. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation. 2006;113:1865–70.

    Article  PubMed  Google Scholar 

  71. McVeigh ER, Zerhouni EA. Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology. 1991;180:677–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Daire JL, Jacob JP, Hyacinthe JN, Croisille P, Montet-Abou K, Richter S, Botsikas D, Lepetit-Coiffé M, Morel D, Vallée JP. Cine and tagged cardiovascular magnetic resonance imaging in normal rat at 1.5 T: a rest and stress study. J Cardiovasc Magn Reson. 2008;10:48.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhong J, Liu W, Yu X. Transmural myocardial strain in mouse: quantification of high-resolution MR tagging using harmonic phase (HARP) analysis. Magn Reson Med. 2009;61:1368–73.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Dall’Armellina E, Jung BA, Lygate CA, Neubauer S, Markl M, Schneider JE. Improved method for quantification of regional cardiac function in mice using phase-contrast MRI. Magn Reson Med. 2012;67:541–51.

    Article  PubMed  Google Scholar 

  75. Jung B, Odening KE, Dall’Armellina E, Föll D, Menza M, Markl M, Schneider JE. A quantitative comparison of regional myocardial motion in mice, rabbits and humans using in-vivo phase contrast CMR. J Cardiovasc Magn Reson. 2012;14:87.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Azevedo CF, Amado LC, Kraitchman DL, Gerber BL, Osman NF, Rochitte CE, Edvardsen T, Lima JAC. Persistent diastolic dysfunction despite complete systolic functional recovery after reperfused acute myocardial infarction demonstrated by tagged magnetic resonance imaging. Eur Heart J. 2004;25:1419–27.

    Article  PubMed  Google Scholar 

  77. Croisille P, Moore CC, Judd RM, JAC L, Arai M, ER MV, Becker LC, Zerhouni EA. Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-day-old reperfused canine infarcts. Circulation. 1999;99:284–91.

    Article  CAS  PubMed  Google Scholar 

  78. Kraitchman DL, Young AA, Bloomgarden DC, Fayad ZA, Dougherty L, Ferrari VA, Boston RC, Axel L. Integrated MRI assessment of regional function and perfusion in canine myocardial infarction. Magn Reson Med. 1998;40:311–26.

    Article  CAS  PubMed  Google Scholar 

  79. Thomas D, Ferrari VA, Janik M, Kim DH, Pickup S, Glickson JD, Zhou R. Quantitative assessment of regional myocardial function in a rat model of myocardial infarction using tagged MRI. MAGMA. 2004;17:179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou R, Pickup S, Glickson JD, Scott CH, Ferrari VA. Assessment of global and regional myocardial function in the mouse using cine and tagged MRI. Magn Reson Med. 2003;49:760–4.

    Article  PubMed  Google Scholar 

  81. Epstein FH, Yang Z, Gilson WD, Berr SS, Kramer CM, French BA. MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions. Magn Reson Med. 2002;48:399–403.

    Article  PubMed  Google Scholar 

  82. Ashikaga H, Mickelsen SR, Ennis DB, Rodriguez I, Kellman P, Wen H, McVeigh ER. Electromechanical analysis of infarct border zone in chronic myocardial infarction. Am J Physiol Heart Circ Physiol. 2005;289:H1099–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65:1249–54.

    Article  PubMed  Google Scholar 

  84. McMurray JJ, Stewart S. Epidemiology, aetiology, and prognosis of heart failure. Heart. 2000;83:596–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Neubauer S. The failing heart – an engine out of fuel. N Engl J Med. 2007;356:1140–51.

    Article  PubMed  Google Scholar 

  86. Litwin SE, Katz SE, Weinberg EO, Lorell BH, Aurigemma GP, Douglas PS. Serial echocardiographic-doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation. 1995;91:2642–54.

    Article  CAS  PubMed  Google Scholar 

  87. Songstad NT, Johansen D, How OJ, Kaaresen PI, Ytrehus K, Acharya G. Effect of transverse aortic constriction on cardiac structure, function and gene expression in pregnant rats. PLoS One. 2014;9:e89559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. van Nierop BJ, van Assen HC, van Deel ED, Niesen LBP, Duncker DJ, Strijkers GJ, Nicolay K. Phenotyping of left and right ventricular function in mouse models of compensated hypertrophy and heart failure with cardiac MRI. PLoS One. 2013;8:1–9.

    Google Scholar 

  89. Cantor EJF, Babick AP, Vasanji Z, Dhalla NS, Netticadan T. A comparative serial echocardiographic analysis of cardiac structure and function in rats subjected to pressure or volume overload. J Mol Cell Cardiol. 2005;38:777–86.

    Article  CAS  PubMed  Google Scholar 

  90. Blom AS, Pilla JJ, Arkles J, Dougherty L, Ryan LP, Iii JHG, Acker MA, Gorman RC. Ventricular restraint prevents infarct expansion and improves borderzone function after myocardial infarction: a study using magnetic resonance imaging, three-dimensional surface modeling, and myocardial tagging. Ann Thorac Surg. 2007;84:2004–10.

    Article  PubMed  Google Scholar 

  91. Azevedo CF, Amado LC, Kraitchman DL, Gerber BL, Edvardsen T, Osman NF, Rochitte CE, Wu KC, Lima JAC. The effect of intra-aortic balloon counterpulsation on left ventricular functional recovery early after acute myocardial infarction: a randomized experimental magnetic resonance imaging study. Eur Heart J. 2005;26:1235–41.

    Article  PubMed  Google Scholar 

  92. Guccione JM, Walker JC, Beitler JR, et al. The effect of anteroapical aneurysm plication on end-systolic three-dimensional strain in the sheep: a magnetic resonance imaging tagging study. J Thorac Cardiovasc Surg. 2006;131:579–86.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Traverse JH, Henry TD, Moye’ LA. Is the measurement of left ventricular ejection fraction the proper end point for cell therapy trials? An analysis of the effect of bone marrow mononuclear stem cell administration on left ventricular ejection fraction after ST-segment elevation myocardia. Am Heart J. 2011;162:671–7.

    Article  PubMed  Google Scholar 

  94. Van Slochteren FJ, Teske AJ, Van Der Spoel TIG, Koudstaal S, Doevendans PA, Sluijter JPG, Cramer MJM, Chamuleau SAJ. Advanced measurement techniques of regional myocardial function to assess the effects of cardiac regenerative therapy in different models of ischaemic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2012;13:808–18.

    Article  PubMed  Google Scholar 

  95. Wolf A, Sanina C, Premer C, et al. Synergistic effects of combined cell therapy for chronic ischemic cardiomyopathy. J Am Coll Cardiol. 2015;66(18):1990–9.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chen Y, Ye L, Zhong J, et al. The structural basis of functional improvement in response to human umbilical cord blood stem cell transplantation. Cell Transplant. 2015;24:971–83.

    Article  PubMed  Google Scholar 

  97. Scimia MC, Gumpert AM, Koch WJ. Cardiovascular gene therapy for myocardial infarction. Expert Opin Biol Ther. 2014;14:183–95.

    Article  CAS  PubMed  Google Scholar 

  98. Carlsson M, Osman NF, Ursell PC, Martin AJ, Saeed M. Quantitative MR measurements of regional and global left ventricular function and strain after intramyocardial transfer of VM202 into infarcted swine myocardium. Am J Physiol Heart Circ Physiol. 2008;295:H522–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saeed M, Saloner D, Do L, Wilson M, Martin A. Cardiovascular magnetic resonance imaging in delivering and evaluating the efficacy of hepatocyte growth factor gene in chronic infarct scar. Cardiovasc Revascularization Med. 2011;12:111–22.

    Article  Google Scholar 

  100. Dicks D, Saloner D, Martin A, Carlsson M, Saeed M. Percutaneous transendocardial VEGF gene therapy: MRI guided delivery and characterization of 3D myocardial strain. Int J Cardiol. 2010;143:255–63.

    Article  PubMed  Google Scholar 

  101. Harris SP, Lyons RG, Bezold KL. In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament. Circ Res. 2011;108:751–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Desjardins CL, Chen Y, Coult AT, Hoit BD, Yu X, Stelzer JE. Cardiac myosin binding protein C insufficiency leads to early onset of mechanical dysfunction. Circ Cardiovasc Imaging. 2012;5:127–36.

    Article  PubMed  Google Scholar 

  103. Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10:531–47.

    Article  CAS  PubMed  Google Scholar 

  104. Hankiewicz JH, Goldspink PH, Buttrick PM, Lewandowski ED. Principal strain changes precede ventricular wall thinning during transition to heart failure in a mouse model of dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2008;294:H330–6.

    Article  CAS  PubMed  Google Scholar 

  105. Biggar WD, Klamut HJ, Demacio PC, Stevens DJ, Ray PN. Duchenne muscular dystrophy: current knowledge, treatment, and future prospects. Clin Orthop Relat Res. 2002;88–106

    Google Scholar 

  106. Li W, Liu W, Zhong J, Yu X. Early manifestation of alteration in cardiac function in dystrophin deficient mdx mouse using 3D CMR tagging. J Cardiovasc Magn Reson. 2009;11:40.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lubamba B, Dhooghe B, Noel S, Leal T. Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem. 2012;45:1132–44.

    Article  CAS  PubMed  Google Scholar 

  108. Nagel G, Hwang TC, Nastiuk KL, Nairn AC, Gadsby DC. The protein kinase A-regulated cardiac Cl− channel resembles the cystic fibrosis transmembrane conductance regulator. Nature. 1992;360:81–4.

    Article  CAS  PubMed  Google Scholar 

  109. Fomby P, Cherlin AJ. Family instability and child well-being. Am Sociol Rev. 2007;72:181–204.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hodges CA, Cotton CU, Palmert MR, Drumm ML. Generation of a conditional null allele for Cftr in mice. Genesis. 2008;46:546–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jiang K, Jiao S, Vitko M, Darrah R, Flask CA, Hodges CA, Yu X. The impact of cystic fibrosis transmembrane regulator disruption on cardiac function and stress response. J Cyst Fibros. 2016;15:34–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yu ScD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Jiang, K., Yu, X. (2018). Quantification of Regional Ventricular Wall Motion in Laboratory Animals. In: Constantinides, C. (eds) Protocols and Methodologies in Basic Science and Clinical Cardiac MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-53001-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53001-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53000-0

  • Online ISBN: 978-3-319-53001-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics