Skip to main content

Abstract

Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) have become well-established tools in basic cardiovascular research to non-invasively provide multi-parametric characterization of hearts in small animal models of human disease. Technical challenges and long scan times frequently preclude a comprehensive, multi-parametric investigation in the same animal, increasing noise, and ultimately the number of animals required to conduct a pre-clinical study. Dedicated acceleration techniques that do not compromise diagnostic accuracy are urgently needed to fully realize the potential of these powerful techniques. While hardware-based solutions (i.e., parallel imaging (PI) techniques) typically provide only two to threefold accelerations in the data acquisition speed, Compressed Sensing (CS) is an alternative approach, which potentially allows for higher scan time reductions. Importantly, it does not rely on specific hardware requirements for the data acquisition, and can in principle be applied on any (pre-) clinical MR optimisation system. CS utilises the fact that the majority of medical images are compressible (i.e., sparse) in some transform domain. The reconstruction uses a non-linear optimisation algorithm, exploiting both the undersampled, incoherent data acquisition and the sparsity model. This chapter explains the basics of CS in the context of MRI, reviews the role of CS in pre-clinical/clinical cardiac MR, and provides examples for the successful applications in cardiac phenotyping of mouse and rat hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASL:

Arterial spin labelling

BLOSM:

Block low-rank sparsity with motion-guidance

CS:

Compressed sensing

CSI:

Chemical shift imaging

FISTA:

Fast iterative shrinkage/thresholding algorithm

MPR:

Myocardial perfusion reserve

MRS:

Magnetic resonance spectroscopy

PI:

Parallel imaging

POCS:

Projection onto convex sets

RF:

Radio frequency

TPSF:

Transform point spread function

TV:

Total variation

TWIST:

Two step iterative shrinkage/thresholding algorithm

References

  1. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10.

    Article  PubMed  Google Scholar 

  2. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.

    Article  CAS  PubMed  Google Scholar 

  3. Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52(4):1289–306.

    Article  Google Scholar 

  4. Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52(2):489–509.

    Article  Google Scholar 

  5. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.

    Article  PubMed  Google Scholar 

  6. Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med. 2007;57(6):1086–98.

    Article  PubMed  Google Scholar 

  7. Feng L, Srichai MB, Lim RP, Harrison A, King W, Adluru G, Dibella EV, Sodickson DK, Otazo R, Kim D. Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson Med. 2012;70(1):64–74.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wech T, Gutberlet M, Greiser A, Stab D, Ritter CO, Beer M, Hahn D, Kostler H. High-resolution functional cardiac MR imaging using density-weighted real-time acquisition and a combination of compressed sensing and parallel imaging for image reconstruction. RöFo. 2010;182(8):676–81.

    CAS  PubMed  Google Scholar 

  9. Otazo R, Candes E, Sodickson DK. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med. 2015;73(3):1125–36.

    Article  PubMed  Google Scholar 

  10. Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med. 2010;64(3):767–76.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Adluru G, Chen L, Kim SE, Burgon N, Kholmovski EG, Marrouche NF, Dibella EV. Three-dimensional late gadolinium enhancement imaging of the left atrium with a hybrid radial acquisition and compressed sensing. J Magn Reson Imaging. 2011;34(6):1465–71.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Akcakaya M, Rayatzadeh H, Basha TA, Hong SN, Chan RH, Kissinger KV, Hauser TH, Josephson ME, Manning WJ, Nezafat R. Accelerated late gadolinium enhancement cardiac MR imaging with isotropic spatial resolution using compressed sensing: initial experience. Radiology. 2012;264(3):691–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hilbert F, Wech T, Hahn D, Kostler H. Accelerated radial Fourier-velocity encoding using compressed sensing. Z Med Phys. 2014;24(3):190–200.

    Article  PubMed  Google Scholar 

  14. Wech T, Lemke A, Medway D, Stork LA, Lygate CA, Neubauer S, Kostler H, Schneider JE. Accelerating cine-MR imaging in mouse hearts using compressed sensing. J Magn Reson Imaging. 2011;34(5):1072–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Motaal AG, Coolen BF, Abdurrachim D, Castro RM, Prompers JJ, Florack LM, Nicolay K, Strijkers GJ. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction. NMR Biomed. 2013;26(4):451–7.

    Article  PubMed  Google Scholar 

  16. Buonincontri G, Methner C, Krieg T, Carpenter TA, Sawiak SJ. Functional assessment of the mouse heart by MRI with a 1-min acquisition. NMR Biomed. 2014;27(6):733–7.

    Article  PubMed  Google Scholar 

  17. Wech T, Seiberlich N, Schindele A, Grau V, Diffley L, Gyngell ML, Borzì A, Köstler H, Schneider JE. Development of real-time magnetic resonance imaging of mouse hearts at 9.4 Tesla–simulations and first application. IEEE Trans Med Imaging. 2016;35(3):912–20. doi:10.1109/TMI.2015.2501832.

  18. Li W, Griswold M, Yu X. Fast cardiac T1 mapping in mice using a model-based compressed sensing method. Magn Reson Med. 2012;68(4):1127–34.

    Article  PubMed  Google Scholar 

  19. Chen Y, Li W, Jiang K, Wang CY, Yu X. Rapid T2 mapping of mouse heart using the carr-purcell-meiboom-gill sequence and compressed sensing reconstruction. J Magn Reson Imaging. 2016;44(2):375–82. doi:10.1002/jmri.25175.

  20. Naresh NK, Chen X, Roy RJ, Antkowiak PF, Annex BH, Epstein FH. Accelerated dual-contrast first-pass perfusion MRI of the mouse heart: development and application to diet-induced obese mice. Magn Reson Med. 2015;73(3):1237–45.

    Article  CAS  PubMed  Google Scholar 

  21. Prieto C, Andia ME, von Bary C, Onthank DC, Schaeffter T, Botnar RM. Accelerating three-dimensional molecular cardiovascular MR imaging using compressed sensing. J Magn Reson Imaging. 2012;36(6):1362–71.

    Article  PubMed  Google Scholar 

  22. Christodoulou AG, Hitchens TK, Wu YL, Ho C, Liang ZP. Improved subspace estimation for low-rank model-based accelerated cardiac imaging. IEEE Trans Biomed Eng. 2014;61(9):2451–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Maguire ML, Geethanath S, Lygate CA, Kodibagkar VD, Schneider JE. Compressed sensing to accelerate magnetic resonance spectroscopic imaging: evaluation and application to 23Na-imaging of mouse hearts. J Cardiovasc Magn Reson. 2015;17:45.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Taubman DS, Marcellin MW. JPEG2000: image compression fundamentals, standards, and practice. Boston: Kluwer Academic Publishers; 2002.

    Book  Google Scholar 

  25. Baraniuk RG. Compressive sensing. IEEE Signal Process Mag. 2007;24(4):118.

    Article  Google Scholar 

  26. Candes EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Process Mag. 2008;25(2):21–30.

    Article  Google Scholar 

  27. Eldar YC, Kutyniok G. Compressed sensing: theory and applications. Cambridge, MA: Cambridge University Press; 2012.

    Book  Google Scholar 

  28. Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math. 2004;57(11):1413–57.

    Article  Google Scholar 

  29. Lustig M, Alley M, Vasanawala S, Donoho DL, Pauly JM. L1 SPIRiT: autocalibrating parallel imaging compressed sensing. In: Proceedings of the 17th annual meeting of ISMRM, Honolulu, 2009. p. 379.

    Google Scholar 

  30. Ruff J, Wiesmann F, Hiller KH, Voll S, von Kienlin M, Bauer WR, Rommel E, Neubauer S, Haase A. Magnetic resonance microimaging for noninvasive quantification of myocardial function and mass in the mouse. Magn Reson Med. 1998;40(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  31. Schneider JE, Cassidy PJ, Lygate C, Tyler DJ, Wiesmann F, Grieve SM, Hulbert K, Clarke K, Neubauer S. Fast, high-resolution in vivo cine magnetic resonance imaging in normal and failing mouse hearts on a vertical 11.7 T system. J Magn Reson Imaging. 2003;18(6):691–701.

    Article  PubMed  Google Scholar 

  32. Hiba B, Richard N, Thibault H, Janier M. Cardiac and respiratory self-gated cine MRI in the mouse: comparison between radial and rectilinear techniques at 7 T. Magn Reson Med. 2007;58(4):745–53.

    Article  PubMed  Google Scholar 

  33. Campbell-Washburn AE, Xue H, Lederman RJ, Faranesh AZ, Hansen MS. Real-time distortion correction of spiral and echo planar images using the gradient system impulse response function. Magn Reson Med. 2016;75(6):2278–85.

    Article  PubMed  Google Scholar 

  34. Vannesjo SJ, Graedel NN, Kasper L, Gross S, Busch J, Haeberlin M, Barmet C, Pruessmann KP. Image reconstruction using a gradient impulse response model for trajectory prediction. Magn Reson Med. 2016;76(1):45–58.

    Article  PubMed  Google Scholar 

  35. Lustig M, Pauly JM. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med. 2010;64(2):457–71.

    PubMed  PubMed Central  Google Scholar 

  36. Caballero J, Price AN, Rueckert D, Hajnal JV. Dictionary learning and time sparsity for dynamic MR data reconstruction. IEEE Trans Med Imaging. 2014;33(4):979–94.

    Article  PubMed  Google Scholar 

  37. Chen C, Li Y, Axel L, Huang J. Real time dynamic MRI by exploiting spatial and temporal sparsity. Magn Reson Imaging. 2016;34(4):473–82.

    Article  PubMed  Google Scholar 

  38. Wang H, Bangerter NK, Park DJ, Adluru G, Kholmovski EG, Xu J, DiBella E. Comparison of centric and reverse-centric trajectories for highly accelerated three-dimensional saturation recovery cardiac perfusion imaging. Magn Reson Med. 2015;74(4):1070–6.

    Article  PubMed  Google Scholar 

  39. Lustig M, Santos JM, Donoho D, Pauly J. k-t SPARSE: high frame rate dynamic MRI exploiting spatio temporal sparsity. In: Proceedings of the 14th annual meeting of ISMRM, Seattle, 2006. p. 2420.

    Google Scholar 

  40. Akcakaya M, Basha TA, Goddu B, Goepfert LA, Kissinger KV, Tarokh V, Manning WJ, Nezafat R. Low-dimensional-structure self-learning and thresholding: regularization beyond compressed sensing for MRI reconstruction. Magn Reson Med. 2011;66(3):756–67.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S, Chen Z. Undersampled MRI reconstruction with patch-based directional wavelets. Magn Reson Imaging. 2012;30(7):964–77.

    Article  PubMed  Google Scholar 

  42. Bioucas-Dias JM, Figueiredo MAT. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans Image Process. 2007;16(12):2992–3004.

    Article  PubMed  Google Scholar 

  43. Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. Siam J Imaging Sci. 2009;2(1):183–202.

    Article  Google Scholar 

  44. Tropp JA, Gilbert AC. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory. 2007;53(12):4655–66.

    Article  Google Scholar 

  45. Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI. Magn Reson Med. 2008;59(2):365–73.

    Article  PubMed  Google Scholar 

  46. Usman M, Prieto C, Odille F, Atkinson D, Schaeffter T, Batchelor PG. A computationally efficient OMP-based compressed sensing reconstruction for dynamic MRI. Phys Med Biol. 2011;56(7):N99–114.

    Article  CAS  PubMed  Google Scholar 

  47. Theodoridis S, Kopsinis Y, Slavakis K. Sparsity- aware learning and compressed sensing: an overview. In: Theodoridis S, Chellappa R, editors. Library in signal processing, Vol 1. Academic Press, Elsevier; 2013.

    Google Scholar 

  48. Pope G. Compressive sensing – a summary of reconstruction algorithms. Zürich: Eidgenössische Technische Hochschule; 2009.

    Google Scholar 

  49. Qaisar S, Bilal RM, Iqbal W, Naureen M, Lee S. Compressive sensing: from theory to applications, a survey. J Commun Netw-S Kor. 2013;15(5):443–56.

    Article  Google Scholar 

  50. Weller DS, Polimeni JR, Grady L, Wald LL, Adalsteinsson E, Goyal VK. Combined compressed sensing and parallel mri compared for uniform and random cartesian undersampling of K-space. Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on 2011, p. 553–6.

    Google Scholar 

  51. Ma S, Yin W, Zhang Y, Chakraborty A. An efficient algorithm for compressed mr imaging using total variation and wavelets. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2008.

    Google Scholar 

  52. Goldstein T, Osher S. The split Bregman method for L1- regularized problems. Siam J Imaging Sci. 2009;2(2):323–43.

    Article  Google Scholar 

  53. Montesinos P, Abascal JF, Cusso L, Vaquero JJ, Desco M. Application of the compressed sensing technique to self-gated cardiac cine sequences in small animals. Magn Reson Med. 2013;72(2):369–80.

    Article  PubMed  Google Scholar 

  54. Waghorn B, Edwards T, Yang Y, Chuang KH, Yanasak N, Hu TC. Monitoring dynamic alterations in calcium homeostasis by T (1)-weighted and T (1)-mapping cardiac manganese-enhanced MRI in a murine myocardial infarction model. NMR Biomed. 2008;21(10):1102–11.

    Article  CAS  PubMed  Google Scholar 

  55. Li W, Griswold M, Yu X. Rapid T1 mapping of mouse myocardium with saturation recovery Look-Locker method. Magn Reson Med. 2010;64(5):1296–303.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kober F, Iltis I, Cozzone PJ, Bernard M. Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: influence of ketamine/xylazine and isoflurane anesthesia. Magn Reson Med. 2005;53(3):601–6.

    Article  PubMed  Google Scholar 

  57. Streif JU, Nahrendorf M, Hiller KH, Waller C, Wiesmann F, Rommel E, Haase A, Bauer WR. In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magn Reson Med. 2005;53(3):584–92.

    Article  PubMed  Google Scholar 

  58. Chen X, Salerno M, Yang Y, Epstein FH. Motion-compensated compressed sensing for dynamic contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: block low-rank sparsity with motion-guidance (BLOSM). Magn Reson Med. 2014;72(4):1028–38.

    Article  PubMed  Google Scholar 

  59. Hu S, Lustig M, Chen AP, Crane J, Kerr A, Kelley DA, Hurd R, Kurhanewicz J, Nelson SJ, Pauly JM, Vigneron DB. Compressed sensing for resolution enhancement of hyperpolarized 13C flyback 3D-MRSI. J Magn Reson. 2008;192(2):258–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Larson PE, Hu S, Lustig M, Kerr AB, Nelson SJ, Kurhanewicz J, Pauly JM, Vigneron DB. Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies. Magn Reson Med. 2011;65(3):610–9.

    Article  CAS  PubMed  Google Scholar 

  61. Wech T, Stab D, Budich JC, Fischer A, Tran-Gia J, Hahn D, Kostler H. Resolution evaluation of MR images reconstructed by iterative thresholding algorithms for compressed sensing. Med Phys. 2012;39(7):4328–38.

    Article  Google Scholar 

  62. Peters DC, Derbyshire JA, McVeigh ER. Centering the projection reconstruction trajectory: reducing gradient delay errors. Magn Reson Med. 2003;50(1):1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vannesjo SJ, Haeberlin M, Kasper L, Pavan M, Wilm BJ, Barmet C, Pruessmann KP. Gradient system characterization by impulse response measurements with a dynamic field camera. Magn Reson Med. 2013;69(2):583–93.

    Article  PubMed  Google Scholar 

  64. Tran-Gia J, Stab D, Wech T, Hahn D, Kostler H. Model-based acceleration of parameter mapping (MAP) for saturation prepared radially acquired data. Magn Reson Med. 2013;70(6):1524–34.

    Article  PubMed  Google Scholar 

  65. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, Griswold MA. Magnetic resonance fingerprinting. Nature. 2013;495(7440):187–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

TW acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, KO 2938/4-1) and from Siemens Healthcare GmbH. JES is a Senior British Heart Foundation (BHF) Basic Science Research Fellow (FS/11/50/29038), and acknowledges funding from the BHF, the Oxford Centre of Research Excellence, and the Oxbridge Centre of Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Wech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Wech, T., Schneider, J.E. (2018). Compressed Sensing and Beyond. In: Constantinides, C. (eds) Protocols and Methodologies in Basic Science and Clinical Cardiac MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-53001-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53001-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53000-0

  • Online ISBN: 978-3-319-53001-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics