Skip to main content

Optimizing Movement in Convex and Non-convex Path-Networks to Establish Connectivity

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10156))

Included in the following conference series:

  • 773 Accesses

Abstract

We solve a min-max movement problem in which there are n sensors in path network in plane, where any sensor communicates only with its two immediate neighbors and only at a given maximum communication distance \(\lambda \). We need to move sensors so that each sensor is in the communication range of its two neighbors, keeping the path topology intact. We present an \(O(n^3)\) algorithm for min-max movement problem in a convex path-network which minimizes the maximum movement among the sensors. We also generalize our algorithm for ring, non-convex path, tethered and heterogeneous networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bredin, J., Demaine, E.D., Hajiaghayi, M.T., Rus, D.: Deploying sensor networks with guaranteed fault tolerance. IEEE/ACM Trans. Netw. 18(1), 216–228 (2010)

    Article  Google Scholar 

  2. Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain. Discret. Comput. Geom. 50(2), 374–408 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Corke, P.I., Hrabar, S., Peterson, R.A., Rus, D., Saripalli, S., Sukhatme, G.S.: Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, pp. 3602–3608 (2004)

    Google Scholar 

  4. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for barrier coverage of a line segment. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04383-3_15

    Chapter  Google Scholar 

  5. Demaine, E.D., Hajiaghayi, M.T., Mahini, H., Sayedi-Roshkhar, A.S., Gharan, S.O., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms 5(3), 30 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Demaine, E.D., Hajiaghayi, M.T., Marx, D.: Minimizing movement: fixed-parameter tractability. ACM Trans. Algorithms 11(2), 14:1–14:29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friggstad, Z., Salavatipour, M.R.: Minimizing movement in mobile facility location problems. In: 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 357–366 (2008)

    Google Scholar 

  8. Jacobi, C.G.J.: Ueber eine neue auflsungsart der bei der methode der kleinsten quadraten vorkommenden lineare gleichungen. Astr. Nachr. 22(523), 297–306 (1845)

    Article  Google Scholar 

  9. Kumar, S., Lai, T., Arora, A.: Barrier coverage with wireless sensors. Wireless Netw. 13(6), 817–834 (2007)

    Article  Google Scholar 

  10. Wang, G., Cao, G., La Porta, T.F.: Movement-assisted sensor deployment. IEEE Trans. Mob. Comput. 5(6), 640–652 (2006)

    Article  Google Scholar 

  11. Wareham, T.: Exploring algorithmic options for the efficient design and reconfiguration of reactive robot swarms. In: Proceedings of BICT 2015, pp. 295–302 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Das, S., Nandy, A., Sarvottamananda, S. (2017). Optimizing Movement in Convex and Non-convex Path-Networks to Establish Connectivity. In: Gaur, D., Narayanaswamy, N. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2017. Lecture Notes in Computer Science(), vol 10156. Springer, Cham. https://doi.org/10.1007/978-3-319-53007-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53007-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53006-2

  • Online ISBN: 978-3-319-53007-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics