Skip to main content

Dynamics of Eddies in the Ocean

  • Chapter
  • First Online:
Lagrangian Oceanography

Abstract

In this chapter we apply Lagrangian methods to study mesoscale eddies, rotating coherent features which exist almost everywhere in the ocean. In the first part we focus on a mesoscale anticyclonic eddy that has been sampled in the R/V Professor Gagarinskiy cruise (June–July 2012) in the area to the east off the Kuril Islands in the North Western subarctic Pacific. Lagrangian approach is applied to study formation, structure, and evolution of this feature called the eddy A and of its parent eddy B using a simulation with synthetic tracers advected by the AVISO velocity field. In the second part the output from an eddy-resolved multilayered circulation model is used to analyze the vertical structure of simulated deep-sea eddies in the Japan Sea constrained by a bottom topography. We focus on Lagrangian analysis of ACEs, generated in the model in a typical year approximately at the place of the mooring and the hydrographic sections, where such features have been regularly observed. Using a quasi-3D computation of the FTLEs and displacements for a large number of synthetic tracers in each depth layer, we show that the simulated feature evolves from the eddy, that does not reach the surface in summer, into the feature reaching the surface in fall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreev, A.G., Zhabin, I.A.: Origin of the mesoscale eddies and year-to-year changes of the chlorophyll-a concentration in the Kuril Basin of the Okhotsk Sea. In: PICES-2012 Program and Abstracts, Hiroshima, Japan (2012). https://www.pices.int/publications/presentations/PICES-2012/2012-POC/POC-P-1540-Andreev.pdf

  2. Beron-Vera, F.J., Wang, Y., Olascoaga, M.J., Goni, G.J., Haller, G.: Objective detection of oceanic eddies and the Agulhas leakage. J. Phys. Oceanogr. 43 (7), 1426–1438 (2013). 10.1175/JPO-D-12-0171.1

    Article  ADS  Google Scholar 

  3. Bettencourt, J.H., Lopez, C., Hernandez-Garcia, E.: Oceanic three-dimensional Lagrangian coherent structures: a study of a mesoscale eddy in the Benguela upwelling region. Ocean Model. 51, 73–83 (2012). 10.1016/j.ocemod.2012.04.004

    Article  ADS  Google Scholar 

  4. Budyansky, M.V., Goryachev, V.A., Kaplunenko, D.D., Lobanov, V.B., Prants, S.V., Sergeev, A.F., Shlyk, N.V., Uleysky, M.Y.: Role of mesoscale eddies in transport of Fukushima-derived cesium isotopes in the ocean. Deep-Sea Res. I Oceanogr. Res. Pap. 96, 15–27 (2015). 10.1016/j.dsr.2014.09.007

    Article  ADS  Google Scholar 

  5. Bulatov, N.V., Lobanov, V.B.: Investigation of mesoscale eddies east of Kuril islands on the basis of meteorological satellite data. Sov. J. Remote. Sens. 3, 40–47 (1983) [in Russian]

    Google Scholar 

  6. Bulatov, N.V., Lobanov, V.B.: Influence of the Kuroshio warm-core rings on hydrographic and fishery conditions off Southern Kuril Islands. In: Proceedings of the PORSEC-92 in Okinawa, pp. 1127–1131 (1992)

    Google Scholar 

  7. Chelton, D.B., Schlax, M.G., Samelson, R.M.: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91 (2), 167–216 (2011). 10.1016/j.pocean.2011.01.002

    Article  ADS  Google Scholar 

  8. Dong, C., Nencioli, F., Liu, Y., McWilliams, J.C.: An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data. IEEE Geosci. Remote Sens. Lett. 8 (6), 1055–1059 (2011). 10.1109/lgrs.2011.2155029

    Article  ADS  Google Scholar 

  9. Dugan, J.P., Mied, R.P., Mignerey, P.C., Schuetz, A.F.: Compact, intrathermocline eddies in the Sargasso Sea. J. Geophys. Res. Oceans 87 (C1), 385–393 (1982). 10.1029/jc087ic01p00385

    Article  ADS  Google Scholar 

  10. Early, J.J., Samelson, R.M., Chelton, D.B.: The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr. 41 (8), 1535–1555 (2011). 10.1175/2011jpo4601.1

    Article  ADS  Google Scholar 

  11. Fu, L.L.: Pattern and velocity of propagation of the global ocean eddy variability. J. Geophys. Res. Oceans 114 (C11), C11017 (2009). 10.1029/2009jc005349

    Article  ADS  Google Scholar 

  12. Gordon, A.L., Giulivi, C.F., Lee, C.M., Furey, H.H., Bower, A., Talley, L.: Japan/East Sea intrathermocline eddies. J. Phys. Oceanogr. 32 (6), 1960–1974 (2002). 10.1175/1520-0485(2002)032¡1960:jesie¿2.0.co;2

    Article  ADS  Google Scholar 

  13. Hogan, P., Hurlburt, H.: Why do intrathermocline eddies form in the Japan/East Sea? a modeling perspective. Oceanography 19 (3), 134–143 (2006). 10.5670/oceanog.2006.50

    Article  Google Scholar 

  14. Hormazabal, S., Combes, V., Morales, C.E., Correa-Ramirez, M.A., Lorenzo, E.D., Nuñez, S.: Intrathermocline eddies in the coastal transition zone off central Chile (31 − 41 S). J. Geophys. Res. Oceans 118 (10), 4811–4821 (2013). 10.1002/jgrc.20337

    Article  ADS  Google Scholar 

  15. Isoguchi, O., Kawamura, H.: Eddies advected by time-dependent Sverdrup circulation in the western boundary of the subarctic North Pacific. Geophys. Res. Lett. 30 (15), 1794 (2003). 10.1029/2003GL017652

    Article  ADS  Google Scholar 

  16. Karnaukh, V.N., Karp, B.Y., Tsoy, I.B.: Basement structure and sedimentary cover seismostratigraphy in the northern part of the Japan Basin in the region of the Tarasov Rise (Sea of Japan). Oceanology 47 (5), 691–704 (2007). 10.1134/s0001437007050128

    Article  ADS  Google Scholar 

  17. Karrasch, D., Huhn, F., Haller, G.: Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flows. Proc. R. Soc. A Math. Phys. Eng. Sci. 471 (2173), 20140639–20140639 (2014). 10.1098/rspa.2014.0639

    Article  ADS  MathSciNet  Google Scholar 

  18. Kusakabe, M., Andreev, A., Lobanov, V., Zhabin, I., Kumamoto, Y., Murata, A.: Effects of the anticyclonic eddies on water masses, chemical parameters and chlorophyll distributions in the Oyashio current region. J. Oceanogr. 58 (5), 691–701 (2002). 10.1023/a:1022846407495

    Article  Google Scholar 

  19. Lobanov, V.B., Rogachev, K.A., Bulatov, N.V., Lomakin, A.F., Tolmachev, K.P.: Long-term evolution of the Kuroshio warm eddy. Dokl. USSR Akad. Sci. 317 (4), 984–988 (1991). [in Russian]

    Google Scholar 

  20. Mikhailova, E.N., Shapiro, N.B.: Quasi-isopycnic layer model for large-scale ocean circulation. Phys. Oceanogr. 4 (4), 251–261 (1993). 10.1007/bf02197624

    Article  Google Scholar 

  21. Miller, P.D., Jones, C.K.R.T., Rogerson, A.M., Pratt, L.J.: Quantifying transport in numerically generated velocity fields. Physica D 110 (1–2), 105–122 (1997). 10.1016/S0167-2789(97)00115-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Olson, D.B.: Rings in the ocean. Annu. Rev. Earth Planet. Sci. 19 (1), 283–311 (1991). 10.1146/annurev.ea.19.050191.001435

    Article  ADS  Google Scholar 

  23. Pierrehumbert, R.T., Yang, H.: Global chaotic mixing on isentropic surfaces. J. Atmos. Sci. 50 (15), 2462–2480 (1993). 10.1175/1520-0469(1993)050¡2462:GCMOIS¿2.0.CO;2

    Article  ADS  Google Scholar 

  24. Prants, S., Ponomarev, V., Budyansky, M., Uleysky, M., Fayman, P.: Lagrangian analysis of the vertical structure of eddies simulated in the Japan Basin of the Japan/East Sea. Ocean Model. 86, 128–140 (2015). 10.1016/j.ocemod.2014.12.010

    Article  ADS  Google Scholar 

  25. Prants, S.V.: Dynamical systems theory methods to study mixing and transport in the ocean. Phys. Scr. 87 (3), 038115 (2013). 10.1088/0031-8949/87/03/038115

    Article  ADS  Google Scholar 

  26. Prants, S.V., Andreev, A.G., Budyansky, M.V., Uleysky, M.Y.: Impact of mesoscale eddies on surface flow between the Pacific Ocean and the Bering Sea across the near strait. Ocean Model. 72, 143–152 (2013). 10.1016/j.ocemod.2013.09.003

    Article  ADS  Google Scholar 

  27. Prants, S.V., Budyansky, M.V., Ponomarev, V.I., Uleysky, M.Y.: Lagrangian study of transport and mixing in a mesoscale eddy street. Ocean Model. 38 (1–2), 114–125 (2011). 10.1016/j.ocemod.2011.02.008

    Article  ADS  Google Scholar 

  28. Prants, S.V., Budyansky, M.V., Uleysky, M.Y.: Identifying Lagrangian fronts with favourable fishery conditions. Deep-Sea Res. I Oceanogr. Res. Pap. 90, 27–35 (2014). 10.1016/j.dsr.2014.04.012

    Article  ADS  Google Scholar 

  29. Prants, S.V., Budyansky, M.V., Uleysky, M.Y.: Lagrangian fronts in the ocean. Izv. Atmos. Oceanic Phys. 50 (3), 284–291 (2014). 10.1134/s0001433814030116

    Article  ADS  MATH  Google Scholar 

  30. Prants, S.V., Budyansky, M.V., Uleysky, M.Y.: Lagrangian study of surface transport in the Kuroshio extension area based on simulation of propagation of Fukushima-derived radionuclides. Nonlinear Process. Geophys. 21 (1), 279–289 (2014). 10.5194/npg-21-279-2014

    Article  ADS  Google Scholar 

  31. Prants, S.V., Ponomarev, V.I., Budyansky, M.V., Uleysky, M.Y., Fayman, P.A.: Lagrangian analysis of mixing and transport of water masses in the marine bays. Izv. Atmos. Oceanic Phys. 49 (1), 82–96 (2013). 10.1134/S0001433813010088

    Article  ADS  Google Scholar 

  32. Prants, S.V., Uleysky, M.Y., Budyansky, M.V.: Numerical simulation of propagation of radioactive pollution in the ocean from the Fukushima Dai-ichi nuclear power plant. Dokl. Earth Sci. 439 (2), 1179–1182 (2011). 10.1134/S1028334X11080277

    Article  ADS  Google Scholar 

  33. Prants, S.V., Uleysky, M.Y., Budyansky, M.V.: Lagrangian coherent structures in the ocean favorable for fishery. Dokl. Earth Sci. 447 (1), 1269–1272 (2012). 10.1134/S1028334X12110062

    Article  ADS  Google Scholar 

  34. Qiu, B.: Kuroshio and Oyashio currents. In: Steele, J.H. (ed.) Encyclopedia of Ocean Sciences, 2nd edn., pp. 358–369. Academic Press, Oxford (2001). 10.1016/B978-012374473-9.00350-7

    Chapter  Google Scholar 

  35. Rabinovich, A.B., Thomson, R.E., Bograd, S.J.: Drifter observations of anticyclonic eddies near Bussol’ Strait, the Kuril Islands. J. Oceanogr. 58 (5), 661–671 (2002). 10.1023/a:1022890222516

    Article  Google Scholar 

  36. Rogachev, K.A.: Rapid thermohaline transition in the Pacific western subarctic and Oyashio fresh core eddies. J. Geophys. Res. Oceans 105 (C4), 8513–8526 (2000). 10.1029/1999jc900330

    Article  ADS  Google Scholar 

  37. Rogachev, K.A.: Recent variability in the Pacific western subarctic boundary currents and Sea of Okhotsk. Prog. Oceanogr. 47 (2–4), 299–336 (2000). 10.1016/s0079-6611(00)00040-9

    Article  ADS  Google Scholar 

  38. Rogachev, K.A., Carmack, E.C.: Evidence for the trapping and amplification of near-inertial motions in a large anticyclonic ring in the Oyashio. J. Oceanogr. 58 (5), 673–682 (2002). 10.1023/A:1022842306586

    Article  Google Scholar 

  39. Rogachev, K.A., Tishchenko, P.Y., Pavlova, G.Y., Bychkov, A.S., Carmack, E.C., Wong, C.S., Yurasov, G.I.: The influence of fresh-core rings on chemical concentrations (CO2, PO4, O2, alkalinity, and pH) in the western subarctic Pacific Ocean. J. Geophys. Res. Oceans 101 (C1), 999–1010 (1996). 10.1029/95jc02924

    Article  ADS  Google Scholar 

  40. Shapiro, N.: Formation of a circulation in the quasiisopycnic model of the Black Sea taking into account the stochastic nature of the wind stress. Phys. Oceanogr. 10, 513–531 (2000). 10.1007/BF02519258

    Article  Google Scholar 

  41. Shen, C.Y., Evans, T.E.: Inertial instability and sea spirals. Geophys. Res. Lett. 29 (23), 2124 (2002). 10.1029/2002gl015701

    Article  ADS  Google Scholar 

  42. Sokolovskiy, M.A., Carton, X.J.: Baroclinic multipole formation from heton interaction. Fluid Dyn. Res. 42 (4), 045501 (2010). 10.1088/0169-5983/42/4/045501

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Sokolovskiy, M.A., Filyushkin, B.N., Carton, X.J.: Dynamics of intrathermocline vortices in a gyre flow over a seamount chain. Ocean Dyn. 63 (7), 741–760 (2013). 10.1007/s10236-013-0628-y

    Article  ADS  Google Scholar 

  44. Sokolovskiy, M.A., Verron, J.: Finite-core hetons: stability and interactions. J. Fluid Mech. 423, 127–154 (2000). 10.1017/s0022112000001816

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Sokolovskiy, M.A., Verron, J.: Dynamics of Vortex Structures in a Stratified Rotating Fluid. Atmospheric and Oceanographic Sciences Library, vol. 47. Springer, New York (2014). 10.1007/978-3-319-00789-2

  46. Sulman, M.H.M., Huntley, H.S., Lipphardt Jr., B.L., Jacobs, G., Hogan, P., Kirwan Jr., A.D.: Hyperbolicity in temperature and flow fields during the formation of a Loop current ring. Nonlinear Process. Geophys. 20 (5), 883–892 (2013). 10.5194/npg-20-883-2013

    Article  ADS  Google Scholar 

  47. Takematsu, M., Ostrovski, A.G., Nagano, Z.: Observations of eddies in the Japan basin interior. J. Oceanogr. 55 (2), 237–246 (1999). 10.1023/a:1007846114165

    Article  Google Scholar 

  48. Talley, L., Min, D.H., Lobanov, V., Luchin, V., Ponomarev, V., Salyuk, A., Shcherbina, A., Tishchenko, P., Zhabin, I.: Japan/East Sea water masses and their relation to the sea’s circulation. Oceanography 19 (3), 32–49 (2006). 10.5670/oceanog.2006.42

    Article  Google Scholar 

  49. Talley, L.D., Lobanov, V.B., Tishchenko, P.Y., Ponomarev, V.I., Sherbinin, A.F., Luchin, V.A.: Hydrographic observations in the Japan/East Sea in winter, 2000, with some results from summer, 1999. In: Danchenkov, M.A. (ed.) Oceanography of the Japan Sea. Proceedings of CREAMS’2000, pp. 25–32. Dalnauka Publishing House, Vladivostok (2001). http://www.ferhri.ru/science/conference/creams2000/CREAMS.proceedings.shtml

    Google Scholar 

  50. Talley, L.D., Nagata, Y. (eds.): The Okhotsk sea and Oyashio region. No. 2 in PICES Scientific Reports. PICES (1995). https://www.pices.int/publications/scientific_reports/Report2/Rpt2.pdf

  51. Uleysky, M.Y., Budyansky, M.V., Prants, S.V.: Effect of dynamical traps on chaotic transport in a meandering jet flow. Chaos 17 (4), 043105 (2007). 10.1063/1.2783258

    Article  ADS  MATH  Google Scholar 

  52. Yasuda, I., Ito, S.I., Shimizu, Y., Ichikawa, K., Ueda, K.I., Honma, T., Uchiyama, M., Watanabe, K., Sunou, N., Tanaka, K., Koizumi, K.: Cold-core anticyclonic eddies south of the Bussol’ Strait in the Northwestern Subarctic Pacific. J. Phys. Oceanogr. 30 (6), 1137–1157 (2000). 10.1175/1520-0485(2000)030¡1137:CCAESO¿2.0.CO;2

    Article  ADS  Google Scholar 

  53. Yasuda, I., Okuda, K., Hirai, M.: Evolution of a Kuroshio warm-core ring — variability of the hydrographic structure. Deep Sea Res. Part A 39 (Supplement 1), S131–S161 (1992). 10.1016/s0198-0149(11)80009-9

List of Internet Resources

  1. International Argo Program Homepage. http://www.argo.net/

  2. WHOI Argo Atlas & Database. http://argoweb.whoi.edu/

  3. Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO). http://www.aviso.altimetry.fr

  4. The Global Drifter Program. http://www.aoml.noaa.gov/phod/dac

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Prants, S.V., Uleysky, M.Y., Budyansky, M.V. (2017). Dynamics of Eddies in the Ocean. In: Lagrangian Oceanography. Physics of Earth and Space Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-53022-2_6

Download citation

Publish with us

Policies and ethics