Skip to main content

Fukushima-Derived Cesium Isotopes in the North Western Pacific: Direct Observation and Altimetry-Based Simulation of Propagation

  • Chapter
  • First Online:
Lagrangian Oceanography

Abstract

On March 11, 2011 tsunami caused a heavy damage to the Fukushima Nuclear Power Plant (FNPP). In this chapter we apply the Lagrangian approach to simulate propagation of Fukushima-derived radionuclides advected by altimetric velocity field in the North Western Pacific. The results of simulation are compared with in situ measurements of levels of134Cs and137Cs concentrations. In the first section we focus on simulation just after the accident and in situ measurements in research vessel cruises in June and July 2011 (Kaeriyama et al. Biogeosciences 10(2):4287–4295, 2013; Buesseler et al., Proc Natl Acad Sci 109(16):5984–5988, 2012). Backward-in-time Lagrangian techniques are used to find out the origin and pathways of water samples with measured high levels of radioactivity. The altimetry-based simulation provides the evidence of near-surface transport of radioactive contamination across the Kuroshio Extension jet just after the accident due to pinching off rings from the jet. In the second section we present the results of in situ measurements of134Cs and137Cs at different depths in a broad area in June and July 2012. It was found that 15 month after the incident concentrations of radiocesium in the Japan and Okhotsk seas were at background or slightly increased level, while they had increased values in the subarctic frontal area east off Japan. The highest concentrations have been found to exceed ten times the background levels before the accident. Maximal content of radiocesium was observed within subsurface and intermediate water layers inside the cores of mesoscale ACEs. Convergence and subduction of surface water inside eddies are main reasons of downward transport of radionuclides. Different Lagrangian diagnostics are used to reconstruct the pathways and origin of synthetic tracers imitating measured seawater samples collected in each of those eddies. The results of observations are consistent with the simulated results. It is shown that the tracers, simulating water samples with increased radioactivity measured in the cruise, really visited the areas with presumably high level of contamination. Fast water advection between ACEs and convergence of surface water inside eddies make them responsible for spreading, accumulation, and downward transport of cesium rich water to the intermediate depth in the frontal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrade-Canto, F., Sheinbaum, J., Zavala Sansón, L.: A Lagrangian approach to the loop current eddy separation. Nonlinear Process. Geophys. 20 (1), 85–96 (2013). 10.5194/npg-20-85-2013

    Article  ADS  Google Scholar 

  2. Aoyama, M., Uematsu, M., Tsumune, D., Hamajima, Y.: Surface pathway of radioactive plume of TEPCO Fukushima NPP1 released134Cs and137Cs. Biogeosciences 10 (5), 3067–3078 (2013). 10.5194/bg-10-3067-2013

    Article  ADS  Google Scholar 

  3. Bandong, B.B., Volpe, A.M., Esser, B.K., Bianchini, G.M.: Pre-concentration and measurement of low levels of gamma-ray emitting radioisotopes in coastal waters. Appl. Radiat. Isot. 55 (5), 653–665 (2001). 10.1016/s0969-8043(01)00081-1

    Article  Google Scholar 

  4. Behrens, E., Schwarzkopf, F.U., Lübbecke, J.F., Büning, C.W.: Model simulations on the long-term dispersal of137Cs released into the Pacific Ocean off Fukushima. Environ. Res. Lett. 7 (3), 034004 (2012). 10.1088/1748-9326/7/3/034004

    Article  ADS  Google Scholar 

  5. Budyansky, M.V., Goryachev, V.A., Kaplunenko, D.D., Lobanov, V.B., Prants, S.V., Sergeev, A.F., Shlyk, N.V., Uleysky, M.Y.: Role of mesoscale eddies in transport of Fukushima-derived cesium isotopes in the ocean. Deep-Sea Res. I Oceanogr. Res. Pap. 96, 15–27 (2015). 10.1016/j.dsr.2014.09.007

    Article  ADS  Google Scholar 

  6. Buesseler, K.O., Jayne, S.R., Fisher, N.S., Rypina, I.I., Baumann, H., Baumann, Z., Breier, C.F., Douglass, E.M., George, J., Macdonald, A.M., Miyamoto, H., Nishikawa, J., Pike, S.M., Yoshida, S.: Fukushima-derived radionuclides in the ocean and biota off Japan. Proc. Natl. Acad. Sci. 109 (16), 5984–5988 (2012). 10.1073/pnas.1120794109

    Article  ADS  Google Scholar 

  7. Bulatov, N.V., Lobanov, V.B.: Influence of the Kuroshio warm-core rings on hydrographic and fishery conditions off Southern Kuril Islands. In: Proceedings of the PORSEC-92 in Okinawa, pp. 1127–1131 (1992)

    Google Scholar 

  8. Dietze, H., Kriest, I.:137Cs off Fukushima Dai-ichi, Japan — model based estimates of dilution and fate. Ocean Sci. 8 (3), 319–332 (2012). 10.5194/os-8-319-2012

  9. Ebuchi, N., Hanawa, K.: Trajectory of mesoscale eddies in the Kuroshio recirculation region. J. Oceanogr. 57 (4), 471–480 (2001). 10.1023/A:1021293822277

    Article  Google Scholar 

  10. Honda, M.C., Aono, T., Aoyama, M., Hamajima, Y., Kawakami, H., Kitamura, M., Masumoto, Y., Miyazawa, Y., Takigawa, M., Saino, T.: Dispersion of artificial caesium-134 and -137 in the western North Pacific one month after the Fukushima accident. Geochem. J. 46 (1), e1–e9 (2012)

    Article  Google Scholar 

  11. Inoue, M., Kofuji, H., Hamajima, Y., Nagao, S., Yoshida, K., Yamamoto, M.:134Cs and137Cs activities in coastal seawater along Northern Sanriku and Tsugaru Strait, northeastern Japan, after Fukushima Dai-ichi nuclear power plant accident. J. Environ. Radioact. 111, 116–119 (2012). 10.1016/j.jenvrad.2011.09.012

  12. Inoue, M., Kofuji, H., Nagao, S., Yamamoto, M., Hamajima, Y., Yoshida, K., Fujimoto, K., Takada, T., Isoda, Y.: Lateral variation of134Cs and137Cs concentrations in surface seawater in and around the Japan Sea after the Fukushima Dai-ichi nuclear power plant accident. J. Environ. Radioact. 109, 45–51 (2012). 10.1016/j.jenvrad.2012.01.004

    Article  Google Scholar 

  13. Itoh, S., Yasuda, I.: Characteristics of mesoscale eddies in the Kuroshio–Oyashio Extension region detected from the distribution of the sea surface height anomaly. J. Phys. Oceanogr. 40 (5), 1018–1034 (2010). 10.1175/2009JPO4265.1

    Article  ADS  Google Scholar 

  14. Itoh, S., Yasuda, I.: Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the Subarctic North Pacific. J. Phys. Oceanogr. 40 (12), 2624–2642 (2010). 10.1175/2010jpo4475.1

    Article  ADS  Google Scholar 

  15. Kaeriyama, H., Ambe, D., Shimizu, Y., Fujimoto, K., Ono, T., Yonezaki, S., Kato, Y., Matsunaga, H., Minami, H., Nakatsuka, S., Watanabe, T.: Direct observation of134Cs and137Cs in surface seawater in the western and central North Pacific after the Fukushima Dai-ichi nuclear power plant accident. Biogeosciences 10 (2), 4287–4295 (2013). 10.5194/bg-10-4287-2013

    Article  ADS  Google Scholar 

  16. Kaeriyama, H., Shimizu, Y., Ambe, D., Masujima, M., Shigenobu, Y., Fujimoto, K., Ono, T., Nishiuchi, K., Taneda, T., Kurogi, H., Setou, T., Sugisaki, H., Ichikawa, T., Hidaka, K., Hiroe, Y., Kusaka, A., Kodama, T., Kuriyama, M., Morita, H., Nakata, K., Morinaga, K., Morita, T., Watanabe, T.: Southwest intrusion of134Cs and137Cs derived from the Fukushima Dai-ichi nuclear power plant accident in the western North Pacific. Environ. Sci. Technol. 48 (6), 3120–3127 (2014). 10.1021/es403686v

  17. Kameník, J., Dulaiova, H., Buesseler, K.O., Pike, S.M., Št’astná, K.: Cesium-134 and 137 activities in the central North Pacific Ocean after the Fukushima Dai-ichi nuclear power plant accident. Biogeosciences 10 (9), 6045–6052 (2013). 10.5194/bg-10-6045-2013

    Article  ADS  Google Scholar 

  18. Kanda, J.: Continuing137Cs release to the sea from the Fukushima Dai-ichi nuclear power plant through 2012. Biogeosciences 10 (9), 6107–6113 (2013). 10.5194/bg-10-6107-2013

    Article  ADS  Google Scholar 

  19. Karasev, E.V.: Monitoring of ecological conditions of the Far East seas. In: Proceedings of the 2nd International Meeting of Amur-Okhotsk consortium, pp. 75–80. Amur-Okhotsk Consortium (2012). http://amurokhotsk.com/wp-content/uploads/2012/04/Proceedings.pdf

  20. Kawai, H.: Hydrography of the Kuroshio Extension. In: Stommel, H.M., Yoshida, K. (eds.) Kuroshio: physical aspects of the Japan current, pp. 235–352. University of Washington Press, Seattle (1972)

    Google Scholar 

  21. Kitano, K.: Some properties of the warm eddies generated in the confluence zone of the Kuroshio and Oyashio currents. J. Phys. Oceanogr. 5 (2), 245–352 (1975). 10.1175/1520-0485(1975)005¡0245:SPOTWE¿2.0.CO;2

    Article  ADS  Google Scholar 

  22. Kumamoto, Y., Aoyama, M., Hamajima, Y., Aono, T., Kouketsu, S., Murata, A., Kawano, T.: Southward spreading of the Fukushima-derived radiocesium across the Kuroshio extension in the North Pacific. Sci. Rep. 4, 1–9 (2014). 10.1038/srep04276

    Google Scholar 

  23. Kuznetsov, L., Toner, M., Kirwan Jr., A.D., Jones, C.K.R.T., Kantha, L.H., Choi, J.: The loop current and adjacent rings delineated by Lagrangian analysis of the near-surface flow. J. Mar. Res. 60 (3), 405–429 (2002). 10.1357/002224002762231151

    Article  Google Scholar 

  24. Lobanov, V.B., Rogachev, K.A., Bulatov, N.V., Lomakin, A.F., Tolmachev, K.P.: Long-term evolution of the Kuroshio warm eddy. Dokl. USSR Akad. Sci. 317 (4), 984–988 (1991). [in Russian]

    Google Scholar 

  25. Maderich, V., Bezhenar, R., Heling, R., de With, G., Jung, K.T., Myoung, J.G., Cho, Y.K., Qiao, F., Robertson, L.: Regional long-term model of radioactivity dispersion and fate in the Northwestern Pacific and adjacent seas: application to the Fukushima Dai-ichi accident. J. Environ. Radioact. 131, 4–18 (2014). 10.1016/j.jenvrad.2013.09.009

    Article  Google Scholar 

  26. Mendoza, C., Mancho, A.M.: The Lagrangian description of aperiodic flows: a case study of the Kuroshio current. Nonlinear Process. Geophys. 19 (4), 449–472 (2012). 10.5194/npg-19-449-2012

    Article  ADS  Google Scholar 

  27. Mendoza, C., Mancho, A.M., Rio, M.H.: The turnstile mechanism across the Kuroshio current: analysis of dynamics in altimeter velocity fields. Nonlinear Process. Geophys. 17 (2), 103–111 (2010). 10.5194/npg-17-103-2010

    Article  ADS  Google Scholar 

  28. Miyazawa, Y., Masumoto, Y., Varlamov, S.M., Miyama, T., Takigawa, M., Honda, M., Saino, T.: Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident. Biogeosciences 10 (4), 2349–2363 (2013). 10.5194/bg-10-2349-2013

    Article  ADS  Google Scholar 

  29. Nakano, M., Povinec, P.P.: Long-term simulations of the137Cs dispersion from the Fukushima accident in the world ocean. J. Environ. Radioact. 111, 109–115 (2012). 10.1016/j.jenvrad.2011.12.001

    Article  Google Scholar 

  30. Nakata, K., Sugisaki, H. (eds.): Impacts of the Fukushima Nuclear Accident on Fish and Fishing Grounds. Springer, Tokyo (2015). 10.1007/978-4-431-55537-7

    Google Scholar 

  31. Oikawa, S., Takata, H., Watabe, T., Misonoo, J., Kusakabe, M.: Distribution of the Fukushima-derived radionuclides in seawater in the Pacific off the coast of Miyagi, Fukushima, and Ibaraki prefectures, Japan. Biogeosciences 10 (7), 5031–5047 (2013). 10.5194/bg-10-5031-2013

    Article  ADS  Google Scholar 

  32. Povinec, P.P., Hirose, K., Aoyama, M.: Fukushima Accident: Radioactivity Impact on the Environment. Elsevier, Amsterdam (2013). 10.1016/B978-0-12-408132-1.01001-9

    Google Scholar 

  33. Prants, S.V., Budyansky, M.V., Ponomarev, V.I., Uleysky, M.Y.: Lagrangian study of transport and mixing in a mesoscale eddy street. Ocean Model. 38 (1–2), 114–125 (2011). 10.1016/j.ocemod.2011.02.008

    Article  ADS  Google Scholar 

  34. Prants, S.V., Uleysky, M.Y., Budyansky, M.V.: Numerical simulation of propagation of radioactive pollution in the ocean from the Fukushima Dai-ichi nuclear power plant. Dokl. Earth Sci. 439 (2), 1179–1182 (2011). 10.1134/S1028334X11080277

    Article  ADS  Google Scholar 

  35. Qiu, B., Chen, S.: Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr. 35 (11), 2090–2103 (2005). 10.1175/JPO2807.1

    Article  ADS  Google Scholar 

  36. Remez, V.P.: The application of caesium selective sorbents in the remediation and restoration of radioactive contaminated sites. In: Luykx, F., Frissel, M. (eds.) Radioecology and the Restoration of Radioactive-Contaminated Sites. NATO ASI Series, vol. 13, pp. 217–224. Springer, Dordrecht (1996). 10.1007/978-94-009-0301-2_17

    Chapter  Google Scholar 

  37. Remez, V.P., Sapozhnikov, Y.A.: The rapid determination of caesium radionuclides in water systems using composite sorbents. Appl. Radiat. Isot. 47 (9–10), 885–886 (1996). 10.1016/s0969-8043(96)00080-2

    Article  Google Scholar 

  38. Rossi, V., Sebille, E.V., Gupta, A.S., Garçon, V., England, M.H.: Multi-decadal projections of surface and interior pathways of the Fukushima Cesium-137 radioactive plume. Deep-Sea Res. I Oceanogr. Res. Pap. 80, 37–46 (2013). 10.1016/j.dsr.2013.05.015

    Article  ADS  Google Scholar 

  39. Rypina, I.I., Jayne, S.R., Yoshida, S., Macdonald, A.M., Douglass, E., Buesseler, K.: Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model-data intercomparison. Biogeosciences 10 (7), 4973–4990 (2013). 10.5194/bg-10-4973-2013

    Article  ADS  Google Scholar 

  40. Sugimoto, S., Hanawa, K.: Relationship between the path of the Kuroshio in the south of Japan and the path of the Kuroshio extension in the east. J. Oceanogr. 68 (1), 219–225 (2012). 10.1007/s10872-011-0089-1

    Article  Google Scholar 

  41. Tomosada, A.: Generation and decay of Kuroshio warm-core rings. Deep Sea Res. Part A 33 (11–12), 1475–1486 (1986). 10.1016/0198-0149(86)90063-4

    Article  ADS  Google Scholar 

  42. Tsumune, D., Tsubono, T., Aoyama, M., Hirose, K.: Distribution of oceanic137Cs from the Fukushima Dai-ichi nuclear power plant simulated numerically by a regional ocean model. J. Environ. Radioact. 111, 100–108 (2012). 10.1016/j.jenvrad.2011.10.007

    Article  Google Scholar 

  43. Tsumune, D., Tsubono, T., Aoyama, M., Uematsu, M., Misumi, K., Maeda, Y., Yoshida, Y., Hayami, H.: One-year, regional-scale simulation of137Cs radioactivity in the ocean following the Fukushima Dai-ichi nuclear power plant accident. Biogeosciences 10 (8), 5601–5617 (2013). 10.5194/bg-10-5601-2013

    Article  ADS  Google Scholar 

  44. Waseda, T.: On the Eddy-Kuroshio interaction: Meander formation process. J. Geophys. Res. Oceans 108 (C7), 3220 (2003). 10.1029/2002JC001583

    Article  ADS  Google Scholar 

  45. Yasuda, I., Okuda, K., Hirai, M.: Evolution of a Kuroshio warm-core ring — variability of the hydrographic structure. Deep Sea Res. Part A 39 (Supplement 1), S131–S161 (1992). 10.1016/s0198-0149(11)80009-9

List of Internet Resources

  1. The Global Drifter Program. http://www.aoml.noaa.gov/phod/dac

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Prants, S.V., Uleysky, M.Y., Budyansky, M.V. (2017). Fukushima-Derived Cesium Isotopes in the North Western Pacific: Direct Observation and Altimetry-Based Simulation of Propagation. In: Lagrangian Oceanography. Physics of Earth and Space Environments. Springer, Cham. https://doi.org/10.1007/978-3-319-53022-2_7

Download citation

Publish with us

Policies and ethics