Skip to main content

Lattice Methods and Effective Field Theory

  • Chapter
  • First Online:
An Advanced Course in Computational Nuclear Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 936))

Abstract

Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of Endres et al. (Phys Rev A 84:043644, 2011; Phys Rev A 87:023615, 2013) for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a very naïve estimate; far more sophisticated algorithms exist with power-law scaling.

  2. 2.

    This interpretation of the signal-to-noise problem has been provided by David B. Kaplan.

  3. 3.

    The explicit condition on N τ required for extracting zero temperature observables will be discussed in Sect. 5.3.

  4. 4.

    Many thanks to Michael Endres for the following variational argument.

  5. 5.

    This argument is somewhat simplified by our particular lattice setup in which we have no fermion determinant as part of the probability measure. For cases where there is a fermion determinant, there will be a mismatch between the interaction that the particles created by the operators see (attractive) and the interaction specified by the determinant used in the probability measure (repulsive). This is known as a partially quenched theory, and is unphysical. However, one may calculate a spectrum using an effective theory in which valence (operator) and sea (determinant) particles are treated differently. Often it is sufficient to ignore the effects from partial quenching because any differences contribute only to loop diagrams and may be suppressed.

  6. 6.

    This single scale is also critical for the appearance of the log-normal distribution in correlators near unitarity, where the moments are given by

    $$\displaystyle\begin{array}{rcl} \mathcal{M}_{N} \sim e^{-E_{\mbox{ N-body}}\tau } \sim e^{-f(N)\varLambda _{{\ast}}\tau }.& & {}\end{array}$$
    (5.237)

    Numerical evidence was shown in [51] that f(N) has the expected form for the log-normal distribution.

References

  1. G.P. Lepage, From Actions to Answers, Proceedings of the 1989 Theoretical Advanced Study Institute (TASI) (1989)

    Google Scholar 

  2. E. Berkowitz, T. Kurth, A. Nicholson, B. Joo, E. Rinaldi, M. Strother, P.M. Vranas, A. Walker-Loud, Phys. Lett. B 765, 285–292 (2017)

    Article  ADS  Google Scholar 

  3. K. Orginos, A. Parreno, M.J. Savage, S.R. Beane, E. Chang, W. Detmold, Phys. Rev. D 92, 114512 (2015)

    Article  ADS  Google Scholar 

  4. E. Chang, W. Detmold, K. Orginos, A. Parreno, M.J. Savage, B.C. Tiburzi, S.R. Beane, Phys. Rev. D 92, 114502 (2015)

    Article  ADS  Google Scholar 

  5. S.R. Beane, E. Chang, W. Detmold, K. Orginos, A. Parreño, M.J. Savage, B.C. Tiburzi, Phys. Rev. Lett. 115, 132001 (2015)

    Article  ADS  Google Scholar 

  6. S.R. Beane, E. Chang, S.D. Cohen, W. Detmold, H.W. Lin, K. Orginos, A. Parreño, M.J. Savage, Phys. Rev. D 91, 114503 (2015)

    Article  ADS  Google Scholar 

  7. S.R. Beane, E. Chang, S. Cohen, W. Detmold, H.W. Lin, K. Orginos, A. Parreno, M.J. Savage, B.C. Tiburzi, Phys. Rev. Lett. 113, 252001 (2014)

    Article  ADS  Google Scholar 

  8. S.R. Beane, E. Chang, S.D. Cohen, W. Detmold, H.W. Lin, T.C. Luu, K. Orginos, A. Parreno, M.J. Savage, A. Walker-Loud, Phys. Rev. D 87, 034506 (2013)

    Article  ADS  Google Scholar 

  9. S.R. Beane, E. Chang, W. Detmold, H.W. Lin, T.C. Luu, K. Orginos, A. Parreno, M.J. Savage, A. Torok, A. Walker-Loud, Phys. Rev. D 85, 054511 (2012)

    Article  ADS  Google Scholar 

  10. S.R. Beane, W. Detmold, H.W. Lin, T.C. Luu, K. Orginos, M.J. Savage, A. Torok, A. Walker-Loud, Phys. Rev. D 81, 054505 (2010)

    Article  ADS  Google Scholar 

  11. T. Yamazaki, Proceedings, 33rd International Symposium on Lattice Field Theory (Lattice 2015) (2015)

    Google Scholar 

  12. T. Yamazaki, K.I. Ishikawa, Y. Kuramashi, A. Ukawa, Phys. Rev. D 92, 014501 (2015)

    Article  ADS  Google Scholar 

  13. T. Yamazaki, K.I. Ishikawa, Y. Kuramashi, A. Ukawa, Phys. Rev. D 86, 074514 (2012)

    Article  ADS  Google Scholar 

  14. K. Murano, N. Ishii, S. Aoki, T. OPTdoi, T. Hatsuda, Y. Ikeda, T. Inoue, H. Nemura, K. Sasaki, Phys. Lett. B 735, 19 (2014)

    Google Scholar 

  15. T. Inoue, N. Ishii, S. Aoki, T. OPTdoi, T. Hatsuda, Y. Ikeda, K. Murano, H. Nemura, K. Sasaki, Prog. Theor. Phys. 124, 591 (2010)

    Google Scholar 

  16. S.R. Beane, W. Detmold, T.C. Luu, K. Orginos, A. Parreno, M.J. Savage, A. Torok, A. Walker-Loud, Phys. Rev. D 80, 074501 (2009)

    Article  ADS  Google Scholar 

  17. T. OPTdoi, S. Aoki, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, K. Murano, H. Nemura, K. Sasaki, Prog. Theor. Phys. 127, 723 (2012)

    Google Scholar 

  18. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    Article  ADS  Google Scholar 

  19. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  20. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 478, 629 (1996)

    Article  ADS  Google Scholar 

  21. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998)

    Article  ADS  Google Scholar 

  22. E. Epelbaum, H.W. Hammer, U.G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  23. E. Epelbaum (2010). arXiv:1001.3229

    Google Scholar 

  24. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011)

    Article  ADS  Google Scholar 

  25. D.B. Kaplan, Five lectures on effective field theory (2005). arXiv:Nucl-th/0510023

    Google Scholar 

  26. S. Giorgini, L. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)

    Article  ADS  Google Scholar 

  27. I. Block, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  28. J.E. Drut, A.N. Nicholson, J. Phys. G 40, 043101 (2013)

    Article  ADS  Google Scholar 

  29. S.R. Beane, W. Detmold, K. Orginos, M.J. Savage, Prog. Part. Nucl. Phys. 66, 1 (2011)

    Article  ADS  Google Scholar 

  30. W. Detmold, M.G. Endres, Phys. Rev. D 90, 034503 (2014)

    Article  ADS  Google Scholar 

  31. W. Detmold, M.G. Endres, PoS LATTICE2014, 170 (2015)

    Google Scholar 

  32. D. Grabowska, D.B. Kaplan, A.N. Nicholson, Phys. Rev. D 87, 014504 (2013)

    Article  ADS  Google Scholar 

  33. M.G. Endres, D.B. Kaplan, J.W. Lee, A.N. Nicholson, PoS LATTICE2011, 017 (2011)

    Google Scholar 

  34. A.C. Berry, Trans. Am. Math. Soc. 49, 122 (1941)

    Article  Google Scholar 

  35. C.G. Esseen, Arkiv for matematik, astronomi och fysik A 28, 1 (1942)

    Google Scholar 

  36. T. DeGrand, Phys. Rev. D 86, 014512 (2012)

    Article  ADS  Google Scholar 

  37. A.N. Nicholson, Phys. Rev. Lett. 109, 073003 (2012)

    Article  ADS  Google Scholar 

  38. A.N. Nicholson, EPJ Web Conf. 113, 03019 (2016)

    Article  Google Scholar 

  39. M.G. Endres, D.B. Kaplan, J.W. Lee, A.N. Nicholson, Phys. Rev. A 87, 023615 (2013)

    Article  ADS  Google Scholar 

  40. J.J. Dudek, R.G. Edwards, M.J. Peardon, D.G. Richards, C.E. Thomas, Phys. Rev. D 82, 034508 (2010)

    Article  ADS  Google Scholar 

  41. C. Michael, I. Teasdale, Nucl. Phys. B 215, 433 (1983)

    Article  ADS  Google Scholar 

  42. M. Lüscher, U. Wolff, Nucl. Phys. B 339, 222 (1990)

    Article  ADS  Google Scholar 

  43. B. Blossier, M. Della Morte, G. von Hippel, T. Mendes, R. Sommer, J. High Energy Phys. 04, 094 (2009)

    Google Scholar 

  44. C. Aubin, K. Orginos, PoS LATTICE2011, 148 (2011)

    Google Scholar 

  45. T. Sarkar, O. Pereira, IEEE Antennas Propag. Mag. 37, 48 (1995)

    Article  ADS  Google Scholar 

  46. S.R. Beane, W. Detmold, T.C. Luu, K. Orginos, A. Parreno et al., Phys. Rev. D 79, 114502 (2009)

    Article  ADS  Google Scholar 

  47. G.T. Fleming, S.D. Cohen, H.W. Lin, V. Pereyra, Phys. Rev. D 80, 074506 (2009)

    Article  ADS  Google Scholar 

  48. K. Symanzik, Recent Developments in Gauge Theories (Plenum, New York, 1980)

    Google Scholar 

  49. K. Symanzik, Nucl. Phys. B 226, 205 (1983)

    Article  ADS  Google Scholar 

  50. G. Batrouni, A. Hansen, M. Nelkin, Phys. Rev. Lett. 57, 1336 (1986)

    Article  ADS  Google Scholar 

  51. G. Katz, G. Batrouni, C. Davies, A. Kronfeld, P. Lepage, P. Rossi, B. Svetitsky, K. Wilson, Phys. Rev. D 37, 1589 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  52. M. Lüscher, Commun. Math. Phys. 105, 153 (1986)

    Article  ADS  Google Scholar 

  53. M. Lüscher, Nucl. Phys. B 354, 531 (1991)

    Article  ADS  Google Scholar 

  54. S.R. Beane, P.F. Bedaque, A. Parreno, M.J. Savage, Phys. Lett. B 585, 106 (2004)

    Article  ADS  Google Scholar 

  55. R.A. Briceno, Z. Davoudi, Phys. Rev. D 88 (9), 094507 (2013)

    Article  ADS  Google Scholar 

  56. R.A. Briceno, M.T. Hansen, A. Walker-Loud, Phys. Rev. D 91, 034501 (2015)

    Article  ADS  Google Scholar 

  57. T. Luu, M.J. Savage, Phys. Rev. D 83, 114508 (2011)

    Article  ADS  Google Scholar 

  58. S. Koenig, D. Lee, H.W. Hammer, Ann. Phys. 327, 1450 (2012)

    Article  ADS  Google Scholar 

  59. K. Rummukainen, S.A. Gottlieb, Nucl. Phys. B 450, 397 (1995)

    Article  ADS  Google Scholar 

  60. C. Kim, C. Sachrajda, S.R. Sharpe, Nucl. Phys. B 727, 218 (2005)

    Article  ADS  Google Scholar 

  61. S. Bour, S. Koenig, D. Lee, H.W. Hammer, U.G. Meissner, Phys. Rev. D 84, 091503 (2011)

    Article  ADS  Google Scholar 

  62. Z. Davoudi, M.J. Savage, Phys. Rev. D 84, 114502 (2011)

    Article  ADS  Google Scholar 

  63. X. Li, C. Liu, Phys. Lett. B 587, 100 (2004)

    Article  ADS  Google Scholar 

  64. X. Feng, X. Li, C. Liu, Phys. Rev. D 70, 014505 (2004)

    Article  ADS  Google Scholar 

  65. M.T. Hansen, S.R. Sharpe, Phys. Rev. D 93, 096006 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  66. R.A. Briceno, Z. Davoudi, Phys. Rev. D 87, 094507 (2013)

    Article  ADS  Google Scholar 

  67. S.R. Beane, W. Detmold, M.J. Savage, Phys. Rev. D 76, 074507 (2007)

    Article  ADS  Google Scholar 

  68. B. Smigielski, J. Wasem, Phys. Rev. D 79, 054506 (2009)

    Article  ADS  Google Scholar 

  69. R.A. Briceno, Z. Davoudi, T.C. Luu, Phys. Rev. D 88, 034502 (2013)

    Article  ADS  Google Scholar 

  70. R.A. Briceno, Z. Davoudi, T. Luu, M.J. Savage, Phys. Rev. D 88, 114507 (2013)

    Article  ADS  Google Scholar 

  71. S.R. Beane, P.F. Bedaque, K. Orginos, M.J. Savage, Phys. Rev. Lett. 97, 012001 (2006)

    Article  ADS  Google Scholar 

  72. D.J. Wilson, J.J. Dudek, R.G. Edwards, C.E. Thomas, Phys. Rev. D 91 (5), 054008 (2015)

    Article  ADS  Google Scholar 

  73. R.A. Briceno, J.J. Dudek, R.G. Edwards, C.J. Shultz, C.E. Thomas, D.J. Wilson, Phys. Rev. D 93 (11), 114508 (2016)

    Article  ADS  Google Scholar 

  74. V. Verduci, C.B. Lang, PoS LATTICE2014, 121 (2014)

    Google Scholar 

  75. W. Detmold, A. Nicholson, Phys. Rev. D 93 (11), 114511 (2016)

    Article  ADS  Google Scholar 

  76. S.R. Beane, E. Chang, S.D. Cohen, W. Detmold, H.W. Lin, T.C. Luu, K. Orginos, A. Parreno, M.J. Savage, A. Walker-Loud, Phys. Rev. Lett. 109, 172001 (2012)

    Article  ADS  Google Scholar 

  77. S.R. Beane, P.F. Bedaque, T.C. Luu, K. Orginos, E. Pallante, A. Parreno, M.J. Savage, Nucl. Phys. A 794, 62 (2007)

    Article  ADS  Google Scholar 

  78. M.G. Endres, D.B. Kaplan, J.W. Lee, A.N. Nicholson, Phys. Rev. A 84, 043644 (2011)

    Article  ADS  Google Scholar 

  79. Y. Nishida, D.T. Son, Phys. Rev. D 76, 086004 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  80. D. Blume, J. von Stecher, C.H. Greene, Phys. Rev. Lett. 99, 233201 (2007)

    Article  ADS  Google Scholar 

  81. D. Blume, K.M. Daily, C. R. Phys. 12, 86 (2011)

    Article  ADS  Google Scholar 

  82. F. Werner, Y. Castin, Phys. Rev. Lett. 97, 150401 (2006)

    Article  ADS  Google Scholar 

  83. D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009)

    Article  ADS  Google Scholar 

  84. B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Eur. Phys. J. A 31, 105 (2007)

    Article  ADS  Google Scholar 

  85. E.P. Wigner, Phys. Rev. 98, 145 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  86. T.D. Cohen, Phys. Rev. C 55, 67 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  87. D.R. Phillips, S.R. Beane, T.D. Cohen, Ann. Phys. 263, 255 (1998)

    Article  ADS  Google Scholar 

  88. S. Fleming, T. Mehen, I.W. Stewart, Nucl. Phys. A 677, 313 (2000)

    Article  ADS  Google Scholar 

  89. E. Braaten, H.W. Hammer, Phys. Rep. 428, 259 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  90. P.F. Bedaque, H.W. Hammer, U. van Kolck, Nucl. Phys. A 646, 444 (1999)

    Article  ADS  Google Scholar 

  91. S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire, U. van Kolck, Phys. Rev. A 64, 042103 (2001)

    Article  ADS  Google Scholar 

  92. V.N. Efimov, Phys. Lett. B 33, 563 (1970)

    Article  ADS  Google Scholar 

  93. V.N. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971)

    Google Scholar 

  94. H.W. Hammer, L. Platter, Ann. Rev. Nucl. Part. Sci. 60, 207 (2010)

    Article  ADS  Google Scholar 

  95. M.G. Endres, D.B. Kaplan, J.W. Lee, A.N. Nicholson, Phys. Rev. Lett. 107, 201601 (2011)

    Article  ADS  Google Scholar 

  96. A.N. Nicholson, M.G. Endres, D.B. Kaplan, J.W. Lee, PoS Lattice2010, 206 (2010)

    Google Scholar 

  97. E. Epelbaum, H. Krebs, D. Lee, U.G. Meissner, Eur. Phys. J. A 45, 335 (2010)

    Article  ADS  Google Scholar 

  98. T.A. Lähde, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, G. Rupak, Phys. Lett. B 732, 110 (2014)

    Article  ADS  Google Scholar 

  99. E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, Phys. Rev. Lett. 106, 192501 (2011)

    Article  ADS  Google Scholar 

  100. T.A. Lahde, E. Epelbaum, H. Krebs, D. Lee, U.G. Meißner, G. Rupak, Pramana 83, 651 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Michael Endres, David B. Kaplan, and Jong-Wan Lee for extensive discussions, and especially M. Endres for the development of and permission to use this code. AN was supported in part by U.S. DOE grant No. DE-SC00046548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Nicholson .

Editor information

Editors and Affiliations

Appendix

Appendix

5.1.1 Compilation and Running the Code

This code requires the use of the FFTW library, which you may download and install from fftw.org. The script “create_lib.sh” should be run first from the head directory. Once this script is successful, you may go into the production directory, modify the script “create_binary.sh” to reflect your path to the FFTW library, and compile by running this script. The executable created is called “a.out”, which should be run without specifying any additional parameters in the command line. Input parameters are specified in the files included in the “arg” folder. The parameters for each file are described in the header “arg.h”. The codes can be downloaded from the link https://github.com/ManyBodyPhysics/LectureNotesPhysics/tree/master/Programs/Chapter5-programs/. Output is created in the folder “results”. The file gives a list of the values (real part listed first, imaginary second) of the two-particle correlation function calculated at different values of Euclidean time, on a set of auxiliary field configurations. The organization of the output is as follows:

$$\displaystyle{ \begin{array}{ccccccc} \mathrm{Re}[C(\phi _{1},\tau _{1})] & \mathrm{Im}[C(\phi _{1},\tau _{1})] & \mathrm{Re}[C(\phi _{1},\tau _{2})] & \mathrm{Im}[C(\phi _{1},\tau _{2})] &\cdots & \mathrm{Re}[C(\phi _{1},\tau _{N_{\tau }})] & \mathrm{Im}[C(\phi _{1},\tau _{N_{\tau }})] \\ \mathrm{Re}[C(\phi _{2},\tau _{1})] & \mathrm{Im}[C(\phi _{2},\tau _{1})] & \mathrm{Re}[C(\phi _{2},\tau _{2})] & \mathrm{Im}[C(\phi _{2},\tau _{2})] &\cdots & \mathrm{Re}[C(\phi _{2},\tau _{N_{\tau }})] & \mathrm{Im}[C(\phi _{2},\tau _{N_{\tau }})]\\ &&&\vdots&&& \\ \mathrm{Re}[C(\phi _{N_{\mbox{ cfg}}},\tau _{1})]&\mathrm{Im}[C(\phi _{N_{\mbox{ cfg}}},\tau _{1})]&\mathrm{Re}[C(\phi _{N_{\mbox{ cfg}}},\tau _{2})]&\mathrm{Im}[C(\phi _{N_{\mbox{ cfg}}},\tau _{2})]&\cdots &\mathrm{Re}[C(\phi _{N_{\mbox{ cfg}}},\tau _{N_{\tau }})]&\mathrm{Im}[C(\phi _{N_{\mbox{ cfg}}},\tau _{N_{\tau }})]\\ \end{array} }$$

where N τ and N cfg are the total number of time steps, specified in “do.arg”, and total number of configurations, specified in “evo.arg”, respectively. To calculate the correlation function at a given time, τ, average over all values: \(C(\tau ) =\sum _{i}\left (\mathrm{Re}\left [C(\phi _{i},\tau )\right ] + i\ \mathrm{Im}\left [C(\phi _{i},\tau )\right ]\right )\).

5.1.2 Exercises

5.6. Set the first value in the file “interaction.arg” to a coupling of your choice, and the remaining couplings to 0. Use the long time behavior of the effective mass function, \(\ln \frac{C(\tau )} {C(\tau +1)}\mathop{\longrightarrow }\limits_{\tau \rightarrow \infty }E_{0}\) (see Sect. 5.3), to determine the ground state energy for your choice of coupling, g. Compare this with what you expect from Eq. (5.64), using the relation \(\lambda = e^{-E_{0}}\), as the number of lattice points is increased. You may test the improved interaction, Sect. 5.2.2.5, using coefficients calculated from your code developed in Prob. 4 by setting multiple couplings in the “interaction.arg” file. Be careful to set the dispersion relation in “kinetic.arg” to match the one used in setting up your transfer matrix for the tuning.

5.7. Add a harmonic potential by setting the parameters in potential.arg. The three numerical values correspond to the spring constant, κ, for the x, y, z-directions. Set the interaction coefficients to correspond to unitarity, then find the energies of two unitary fermions in a harmonic trap, exploring and removing finite volume and discretization effects by varying the parameters, \(L,L_{0} = \left (\kappa M\right )^{-1/4}\), and performing extrapolations in these quantities if necessary. Compare your result to the expected value of 2ω, where \(\omega = \sqrt{\kappa /M}\), and the mass M is set in the file “kinetic.arg”.

5.8. Construct sources for three fermions in an l = 0 and l = 1 state and find the lowest energies corresponding to each state at unitarity. Which l corresponds to the true ground state of this system?

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nicholson, A. (2017). Lattice Methods and Effective Field Theory. In: Hjorth-Jensen, M., Lombardo, M., van Kolck, U. (eds) An Advanced Course in Computational Nuclear Physics. Lecture Notes in Physics, vol 936. Springer, Cham. https://doi.org/10.1007/978-3-319-53336-0_5

Download citation

Publish with us

Policies and ethics