Skip to main content

Hardware Components for Condition Monitoring of PEM Fuel Cells

  • Chapter
  • First Online:
Fast Electrochemical Impedance Spectroscopy

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 961 Accesses

Abstract

The fast EIS technique presented in the previous chapters is a generic tool applicable to various electrochemical devices. The biggest obstacle for real-world implementation is the available data acquisition equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wai, Rong Jong, Chung You Lin, Rou Yong Duan, and Yung Ruei Chang. 2007. High-efficiency DC-DC converter with high voltage gain and reduced switch stress. IEEE Transactions on Industrial Electronics 54 (1): 354–364. doi:10.1109/TIE.2006.888794.

  2. Harfman Todorovic, M., L. Palma, and P.N. Enjeti. 2008. Design of a wide input range DC-DC converter with a robust power control scheme suitable for fuel cell power conversion. IEEE Transactions on Industrial Electronics 3: 1247–1255. doi:10.1109/TIE.2007.911200.

  3. Wu, G., X. Ruan, and Z. Ye. 2015. Non-isolated high step-up DC-DC converters adopting switched-capacitor cell. IEEE Transactions on Industrial Electronics 62 (1): 383–393. doi:10.1109/TIE.2014.2327000.

  4. Xuewei, Pan, and A.K. Rathore. 2014. Novel bidirectional snubberless naturally commutated soft-switching current-fed full-bridge isolated DC/DC converter for fuel cell vehicles. IEEE Transactions on Industrial Electronics 61 (5): 2307–2315. doi:10.1109/TIE.2013.2271599.

  5. Valdivia, V., A. Barrado, A. Lazaro, M. Sanz, D. Lopez del Moral, and C. Raga. 2014. Black-box behavioral modeling and identification of DC-DC converters with input current control for fuel cell power conditioning. IEEE Transactions on Industrial Electronics 61 (4): 1891–1903. doi:10.1109/TIE.2013.2267692.

  6. Tseng, Kuo Ching, and Chi Chih Huang. 2014. High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system. IEEE Transactions on Industrial Electronics 61 (3): 1311–1319. doi:10.1109/TIE.2013.2261036.

  7. Hu, X., and C. Gong. 2015. A high gain input-parallel output-series DC/DC converter with dual coupled inductors. IEEE Transactions on Power Electronics 30 (3): 1306–1317. doi:10.1109/TPEL.2014.2315613.

  8. Siwakoti, Y.P., Poh Chiang Loh, F. Blaabjerg, S.J. Andreasen, and G.E. Town. 2015. Y-source boost DC/DC converter for distributed generation. IEEE Transactions on Industrial Electronics 62 (2): 1059–1069. doi:10.1109/TIE.2014.2345336.

  9. Tang, Yu., Dongjin Fu, Ting Wang, and Zhiwei Xu. 2015. Hybrid switched-inductor converters for high step-up conversion. IEEE Transactions on Industrial Electronics 62 (3): 1480–1490. doi:10.1109/TIE.2014.2364797.

  10. Burany, Stephen, Ravi B Gopal, Norman A Freeman, and Stephane Masse. 2006. Method and apparatus for monitoring fuel cell voltages.

    Google Scholar 

  11. Ordonez, M., M.O. Sonnaillon, J.E. Quaicoe, and M.T. Iqbal. 2010. An embedded frequency response analyzer for fuel cell monitoring and characterization. IEEE Transactions on Industrial Electronics 57 (6): 1925–1934. doi:10.1109/TIE.2009.2028295.

  12. Skvarenina, Timothy L (ed.). 2001. The power electronics handbook. Industrial electronics. Boca Raton: CRC Press.

    Google Scholar 

  13. Kester, Walter Allan. 1998. Analog devices practical design techniques for power and thermal management, analog devices technical reference books. Norwood: Analog Devices.

    Google Scholar 

  14. Modulated constant off-time control mechanism, application note. Linfinity Microelectronics.

    Google Scholar 

  15. Chee, San Hwa. 1995. A new, high efficiency monolithic buck converter. Linear Technology.

    Google Scholar 

  16. Webb, Daniel, and Steffen Møller-Holst. 2001. Measuring individual cell voltages in fuel cell stacks. Journal of Power Sources 103: 54–60.

    Google Scholar 

  17. Brunner, Doug, Ajay K. Prasad, Suresh G. Advani, and Brian W. Peticolas. 2010. A robust cell voltage monitoring system for analysis and diagnosis of fuel cell or battery systems. Journal of Power Sources 195 (24): 8006–8012. doi:10.1016/j.jpowsour.2010.06.054.

  18. Dobkin, Bob, and Jim Williams (eds.). 2011. Analog circuit design - a tutorial guide to applications and solutions. Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavle Boškoski .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Boškoski, P., Debenjak, A., Mileva Boshkoska, B. (2017). Hardware Components for Condition Monitoring of PEM Fuel Cells. In: Fast Electrochemical Impedance Spectroscopy . SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-53390-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53390-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53389-6

  • Online ISBN: 978-3-319-53390-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics