Skip to main content

Selection of Mould Fluxes and Special Mould Fluxes for Continuous Casting

  • Chapter
  • First Online:
The Casting Powders Book

Abstract

The various factors influencing the selection of mould powder compositions are discussed in this chapter. Mould powders contain two types of component (i) the minerals which form the slag film and (ii) Carbon which controls the melting rate. Both are vital to the successful performance of the mould powder. The composition of the mould powder is determined by the mould dimensions, the casting conditions and the steel grade being cast. Empirical rules have been developed to provide the required values of the powder consumption (Q reqs ), the viscosity (ηreq) and the break temperature (T reqbr ) for satisfactory casting (i.e. free from longitudinal cracking and sticker break-outs). More than 85% of mould powders conform to these empirical rules. However, other factors can also influence the powder selection process. These include

  1. (i)

    Increasing the slag viscosity or the interfacial tension to reduce slag entrapment.

  2. (ii)

    Increasing the interfacial tension to minimise scaling of the steel surface.

  3. (iii)

    Minimising carbon pick-up (especially for LC and ULC steels).

  4. (iv)

    Providing both support in the mould and optimal heat transfer when casting round billets.

  5. (v)

    Providing reasonable heat transfer in mould configurations with corners acting as heat sinks.

  6. (vi)

    Handling the large amounts of Al2O3 formed when casting high-Al steels whilst maintaining good lubrication throughout the casting.

  7. (vii)

    Handling Ti-stabilised steels which form either TiN or Ti(CN) in the slag pool (which has low solubility in mould slag) or CaO·TiO2 (which has a high Tliq).

  8. (viii)

    Reducing the fluoride content of slag to minimise environmental and health concerns.

All of these problems are discussed in detail and possible solutions are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

D C :

Diameter of carbon particles (m)

f :

Frequency (Hz or cpm)

f* :

fraction of powder forming slag

Q s :

Powder consumption (kgm−2)

q :

Heat flux density (Wm−2)

R* :

(Surface area/Volume)—mould (m−1)

s :

stroke (m)

T :

Temperature (°C)

T br :

Break or Solidification temperature

t :

Thickness of mould (m) or time (s)

V c :

Casting speed (m min−1)

w :

Width of mould (m)

η :

Slag viscosity (dPas)

ρ :

Density (kg m−3)

EMBr:

Electromagnetic braking

IR:

Infrared radiation

LC:

Low-carbon steel

MC:

Medium-carbon steel

SEN:

Submerged entry nozzle

ULC:

Ultra-low-carbon steel

A:

Al2O3

C:

CaO

F:

FeO

Fl:

CaF2

M:

MgO

S:

SiO2

T:

TiO2

References

  1. H Harada, E Anzai, E Takeuchi, Canad. Met. Quart., 39, (3), 307, (2000).

    Google Scholar 

  2. S Ogibayashi, T Mizoguchi,T Kajatani, Intl. Workshop on Thermophys. Data for the Development of Mathematical models of solidification. Gifu City, Japan (1995).

    Google Scholar 

  3. AB Fox, PhD Thesis, “Mould fluxes- their properties and performance” Imperial College, London, (2003).

    Google Scholar 

  4. KC Mills, S Sridhar, AS Normanton, ST Mallaband, Proc. Brimacombe Conf., Vancouver, (2000) p. 781.

    Google Scholar 

  5. S Sridhar, KC Mills, V Ludlow, ST Mallaband, Proc. 3rd Europ. Conf. Continuous Casting, Madrid, 1998 (UNESID, Madrid, 1998) p. 807.

    Google Scholar 

  6. F Neumann, J Neal, MA Pedroza, AH Castiliejos E, FA Acosta G, Proc. 79th. Steelmaking Conf., 1996 (ISS, Warrendale, PA) p. 249.

    Google Scholar 

  7. M Wolf, Proc. 2nd Europ. Conf. Continuous Casting, Dusseldorf, 1994, (VDEh, Dusseldorf, 1994) p. 78.

    Google Scholar 

  8. S Ogibayashi, Y Yamaguchi, T Mukai, T Takahashi, Y Mimura, K Koyama, Y Nagano, T Nakano, Nippon Steel Technical Report, 34, 1, (1987).

    Google Scholar 

  9. KC Mills, AB Fox, ISIJ Intl., 43, 1479, (2003).

    Google Scholar 

  10. K Tsutsumi, S Murakami, S Nishioka, Tetsu-to-Hagane, 84, 617, (1998).

    Article  Google Scholar 

  11. PE Ramirez-Lopez, KC Mills, PD Lee, B Santillana, Met. Mater. Trans., B, 43B, 109, (2012).

    Google Scholar 

  12. SN Singh, KE Blazek, J Metals, 26 (10), 17, (1974).

    Google Scholar 

  13. Thermocalc see www.thermocalc.com.

  14. MB Santillana, PhD Thesis, Thermo-mechanical properties and cracking during solidification of thin slab cast steel. Univ. Delft, NL (2013) Chapter 3.

    Google Scholar 

  15. J Miettinen, AA Howe, Ironmaking and Steelmaking, 27, 212, (2000).

    Google Scholar 

  16. KE Blazek, O Lanzi, P Gano, D Kellogg, Proc. AISTech., 2007, (AIST, Warrendale, PA, 2007) PR-351–141 – 2007.

    Google Scholar 

  17. M Wolf, W Kurz, Met. Mater. Trans., 12, 85, (1981).

    Google Scholar 

  18. M Wolf, Proc. METEC Congress’94;. 2nd Europ. Conf. Continuous Casting, Dusseldorf, 1994, (VDEh, Dusseldorf, 1994) vol. 1, pp 78.

    Google Scholar 

  19. T Mukongo, C Pistorius, A Garbers-Craig, Ironmaking and Steelmaking, 31, 135, (2004).

    Google Scholar 

  20. R Koldewijn, Unpublished Corus Internal Rept. (2007) cited in KC Mills, J Kromhout, A Hamoen, R Boom, Proc. Admet Conf., Dnipropetrovsk, 2007, (Natl. Metall. Acad. Ukr., Dnipropetrovsk, 2007) vol. 2, p. 174.

    Google Scholar 

  21. T Mallaband (Metallurgica, UK) Unpublished results cited by AB Fox, ref. [3].

    Google Scholar 

  22. PE Ramirez- Lopez, PN Jalali, J Bjorkvall, U Sjostrom, C Nilsson, ISIJ Intl., 54, 342, (2014) and Proc. 8th Europ. Conf. Continuous Casting, Graz, Austria, 2014 (ASMET, Vienna, 2014).

    Google Scholar 

  23. E van Vliet, DW van der Plas, SP Carless, A A Kamperman, AE Westendorp, Proc. 7th Europ. Conf. Cont. Casting, Dusseldorf, 2011, (VDEh, Dusseldorf, 2011) Session 4.

    Google Scholar 

  24. M Kawamoto, K Nakajima, T Kanazawa, K Nakai, ISIJ Intl., 34, 593, (1994).

    Google Scholar 

  25. C Lefebvre, JP Radot, JN Pontoire, Y Roux, Revue de Metallurgie, CIT, 94, 489, (1997).

    Google Scholar 

  26. B. Debiesme, J Radot, D Coulombet, C Lefebvre, Y Roux, C Demarval, US Patent No 5 876, 482 (1999) and US Patent No 6, 328, 781 (2001).

    Google Scholar 

  27. S Terada, S Kaneo, T Ishikawa, Y Yoshida, Proc. 74th Steelmaking Conf., Washington, DC, 1991, (ISS, Warrendale, PA, 1991) p. 635.

    Google Scholar 

  28. J Macho, G Hecko, B Golomowski, M Frazee, McMaster Iron & Steelmaking Symp. “Thinner slab casting”, 2005, (McMaster Univ., Hamilton, Ont., 2005) p. 131.

    Google Scholar 

  29. LC Hibbeler, BG Thomas, Proc. AISTech 2013, (AIST, Warrendale, PA, 2013) p. 1215.

    Google Scholar 

  30. S Feldbauer, AW Cramb, Proc. 79th Steelmaking Conf., 1996 (ISS, Warrendale, PA, 1996) p. 595.

    Google Scholar 

  31. K Tsutsumi, K Watanabe, M Suzuki, M Nakada, T Shiomi, Proc. 7th Intl. Conf. Molten slags, fluxes and salts, Cape Town, 2004, (SAIMM, Johannesburg, 2004) p. 803.

    Google Scholar 

  32. J Yoshida,T Ohmi, M Iguchi, ISIJ Intl., 45, 1160, (2005).

    Google Scholar 

  33. K Tsutsumi, K Watanabe, J Kubota, S Hatori, Y Miki, T Suzuki, T Omoto, Proc. 7th Europ. Cont. Casting Conf., Dusseldorf, 2011, (VDEH, Dusseldorf, 2011) Session p. 1.

    Google Scholar 

  34. K Watanabe, K Tsutsumi, M Suzuki, H Fujita, S Hatori, T Omoto, ISIJ Intl., 54, 865, (2014).

    Google Scholar 

  35. J Kromhout, PhD thesis, Mould powders for high speed continuous casting of steel. Univ. of Delft, NL (2011), p. 99.

    Google Scholar 

  36. M Kawamoto, Paper presented at International Workshop on “Thermo-physical data for the development of mathematical models of solidification” Gifu City, Japan, (1995).

    Google Scholar 

  37. M Hanao, Y Tsukaguchi, M Kawamoto, Proc. 4th Intl. Congress Science and Technol., Gifu, 2008, (ISIJ, Tokyo, 2008) p. 694.

    Google Scholar 

  38. R Nishimachi, Y Ogura, SEAISI Quarterly, 25, (4), 44, (1996).

    Google Scholar 

  39. H Tai, M Morashita, T Miyake, Proc. 3rd Europ. Conf. Continuous Casting, Madrid, 1998, (UNESID, Madrid, 1998) p. 447.

    Google Scholar 

  40. K Blazek, HB Yin, G Skoczylas, M McClymonds, M Frazee, Proc. EEEC-METEC Dusseldorf, 2011 (VDEh, Dusseldorf, 2011).

    Google Scholar 

  41. JW Cho, KE Blazek, MJ Frazee, HB Yin, JE Park, SW Moon, ISIJ Intl., 53, 62, (2013).

    Google Scholar 

  42. GH Wen, S Sridhar, P Tang, X Qi, YQ Liu, ISIJ Intl., 47, 1117, (2007).

    Google Scholar 

  43. Q Liu, GH Wen, JZ Li, XJ Fu, P Tang, W Li, Ironmaking and Steelmaking, 41, 292, (2014).

    Google Scholar 

  44. JK Park, JW Cho, KH Moon, SH Lee, KH Kim, HS Jeong, Proc. 7th Intl. Conf. Clean Steel, Balatonfured, Hungary, 2007, (Hung. Min. Metall. Soc., Budapest 2007), p. 264.

    Google Scholar 

  45. H Nakada, K Nagata, ISIJ Intl., 46, 441, (2006).

    Google Scholar 

  46. LY Chen, GH Wen, CL Yang, F Mei, CY Shi, P Tang, Ironmaking and Steelmaking, 42, 105, (2015).

    Google Scholar 

  47. N Takahira, N Hanao, Y Tsukaguchi, ISIJ Intl., 53, 818, (2013).

    Google Scholar 

  48. Q Wang, YJ Lu, SP He, KC Mills, Z Li, Ironmaking and Steelmaking, 38, 297, (2011).

    Google Scholar 

  49. MC Bezerra, CA Valadares, IP Rocha, JP Bulota, MC Carboni, IL Scripnic, CR Santos, K Mills, D Lever, Proc. 36th Steelmaking Seminar, Porto Allegre, RS- Brazil, 2005, (ABM, Sao Paulo, 2005). p. 190 available on line at www.carboox.com/pdf/fluxante_2007.pdf.

  50. AB Fox, KC Mills, D Lever, C Bezerra, C Valadares, I Unamono, J Laraudogoitia, J Gisby, ISIJ Intl., 45, 1051, (2005).

    Google Scholar 

  51. AB Fox, K Mills, D Lever, M C Bezerra, CA Valadares, I Unamono, J Laraudogoitia, J Gisby, Proc. 36th Steelmaking Seminar, Vittoria ES- Brazil, 2005, (ABM, Sao Paulo, 2005) p. 222, available on line at www.carboox.com/pdf/paper2005sfs.pdf,

  52. Z Li, K Mills, MC-Bezerra, Proc. 35th Seminar de Fusao Refino e Solidificao Metals, Salvador, Brazil, 2004 (ABM, Sao Paulo, 2004) p. 281.

    Google Scholar 

  53. Y Nakamura, T Ando, K Kurata, M Ikeda, Trans. ISIJ, 26, 1052, (1986).

    Google Scholar 

  54. DW Bruce, NS Hunter, Proc. 2nd Intl. Conf. Continuous Casting, Dusseldorf, 1994, (VDEh, Dusseldorf, 1994) p. 156.

    Google Scholar 

  55. Q.Wang, SP He, KC Mills, Proc. 4th Intl. Conf. Cont. Casting Steel in Developing Countries, Beijing, China (2008). (Chinese Soc. Metals, Beijing, 2008), p. 715.

    Google Scholar 

  56. MM Wolf, Ironmaker & Steelmaker, 2000, (Jan), 22, (2000).

    Google Scholar 

  57. MM Wolf, Ironmaker & Steelmaker, 2000, (Feb.), 65, (2000).

    Google Scholar 

  58. MM Wolf, Ironmaker & Steelmaker, 2000, (March), 69, (2000).

    Google Scholar 

  59. MM Wolf, Ironmaker & Steelmaker, 2000, (April), 58, (2000).

    Google Scholar 

  60. MM Wolf, Ironmaker & Steelmaker, 2000, (May), 78, (2000).

    Google Scholar 

  61. MM Wolf, Ironmaker & Steelmaker, 2000, (June), 22, (2000).

    Google Scholar 

  62. MM Wolf, Ironmaker & Steelmaker, 2000, (July), 63, (2000).

    Google Scholar 

  63. MM Wolf, Ironmaker & Steelmaker, 2000, (Aug), 75, (2000).

    Google Scholar 

  64. MM Wolf, Ironmaker & Steelmaker, 2000, (Sept), 90, (2000).

    Google Scholar 

  65. MM Wolf, Ironmaker & Steelmaker, 2000, (Oct), 114, (2000).

    Google Scholar 

  66. MM Wolf, Ironmaker & Steelmaker, 2000, (Nov), 67, (2000).

    Google Scholar 

  67. MM Wolf, Ironmaker & Steelmaker, 2000, (Dec), 45, (2000).

    Google Scholar 

  68. H Nakato, S Takeuchi, T Fujii, T Nozaki, N Washio, Proc. 74th Steelmaking Conf., 1991, (ISS, Warrendale, PA, 1991) p. 639.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth C. Mills .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mills, K.C., Däcker, CÅ. (2017). Selection of Mould Fluxes and Special Mould Fluxes for Continuous Casting. In: The Casting Powders Book. Springer, Cham. https://doi.org/10.1007/978-3-319-53616-3_10

Download citation

Publish with us

Policies and ethics