Skip to main content

Molecular Aspects of Thyroid Carcinogenesis

  • Chapter
  • First Online:
Mechanisms of Molecular Carcinogenesis – Volume 1

Abstract

The thyroid is one of the largest endocrine glands in the body and of highest importance to healthy life by regulating energy metabolism, protein synthesis, and hormone sensitivity. Tumors of the thyroid are rare, accounting for only ~2% of all tumors being diagnosed worldwide. Remarkably, this cancer entity is more frequent in women than in men, with incidence ratios of approximately 3:1. This chapter will introduce the main features of thyroid cancer development, especially focusing on altered molecular signaling and epigenetic variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarne D. Effects of the environment, chemicals and drugs on thyroid function. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO, editors. Endotext. South Dartmouth, MA: MDText.com, Inc.; 2010.

    Google Scholar 

  2. Nussey S, Whitehead S, 2001, Chapter 3: The thyroid gland. Endocrinology: an integrated approach. Oxford: BIOS Scientific Publishers. Available from: http://www.ncbi.nlm.nih.gov/books/NBK28/.

  3. DeLellis RA, Nunnemacher G, Wolfe HJ. C-cell hyperplasia. An ultrastructural analysis. Lab Invest. 1977;36:237–48.

    Google Scholar 

  4. Refetoff S. Thyroid hormone serum transport proteins. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext [Internet]. South Dartmouth: MDText.com, Inc.; 2000. https://www.ncbi.nlm.nih.gov/books/NBK285566/. Accessed 7 Jun 2015.

  5. Schweizer U, Johannes J, Bayer D, Braun D. Structure and function of thyroid hormone plasma membrane transporters. Eur Thyroid J. 2014;3(3):143–53.

    Google Scholar 

  6. Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev. 2014;35(2):159–94. doi:10.1210/er.2013–1087.

  7. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. GLOBOCAN 2012 v1.1, Cancer incidence and mortality worldwide: IARC CancerBase No. 11. Lyon: International Agency for Research on Cancer; 2014. Available from: http://globocan.iarc.fr. Accessed on 6 Jan 2016.

  8. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Google Scholar 

  9. Enewold L, Zhu K, Ron E, Marrogi AJ, Stojadinovic A, Peoples GE, Devesa SS. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005. Cancer Epidemiol Biomark Prev. 2009;18(3):784–91.

    Google Scholar 

  10. Katoh H, Yamashita K, Enomoto T, Watanabe M. Classification and general considerations of thyroid cancer. Ann Clin Pathol. 2015;3:1045.

    Google Scholar 

  11. Pacini F, De Groot LJ. Thyroid nodules. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext. South Dartmouth: MDText.com, Inc; 2000.

    Google Scholar 

  12. Cox AD, Der CJ. Ras history: the saga continues. Small GTPases. 2010;1:2–27.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase singaling pathways in cancer. Oncogene. 2007;26:3279–90.

    Article  CAS  PubMed  Google Scholar 

  14. Howell GM, Hodak SP, Yip L. RAS mutations in thyroid cancer. Oncologist. 2013;18:926–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caronia LM, et al. Role of BRAF in thyroid oncogenesis. Clin Cancer Res. 2011;17(24):7511–7.

    Google Scholar 

  16. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.

    Article  CAS  PubMed  Google Scholar 

  17. Ciampi R, Nikiforov YE. RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology. 2007;148:936–41.

    Article  CAS  PubMed  Google Scholar 

  18. Xing M, Alzahrani AS, Carson KA, Violoa D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309:1493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62.

    Article  CAS  PubMed  Google Scholar 

  20. Charles RP, Iezza G, Amendola E, Dankort D, McMahon M. Mutationally activated BRAFV600E elicits papillary thyroid cancer in the adult mouse. Cancer Res. 2011;71:3863–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McFadden DG, Vernon A, Santiago PM, Martinez-McFaline R, Bhutkar A, Crowley DM, McMahon M, Sdow PM, Jacks T. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc Natl Acad Sci U S A. 2014;111(16):E1600–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Robbins HL, Hague A. The PI3K/Akt pathway in tumors of endocrine tissues. Front Endocrinol. 2016;6:188.

    Google Scholar 

  23. Hoiu P, Ji M, Xing M. Association of PTEN gene methylation with genetic alterations in the PI3K/AKT signaling pathway in thyroid tumors. Cancer. 2008;113:2440–7.

    Article  Google Scholar 

  24. Mehlen P, Bredesen DE. Dependence receptors: from basic research to drug development. Sci Signal. 2011;4:mr2.

    Article  PubMed  Google Scholar 

  25. Santoro M, Carlomagno F. Central role of RET in thyroid cancer. Cold Spring Harb Perspect Biol. 2013;5:a009233.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE. Prevalence of RET/PTC rearrangements in thyroid papillary carcinoma: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab. 2006;91:3603–10.

    Article  CAS  PubMed  Google Scholar 

  27. Jhiang SM, Sagartz JE, Tong Y, Parker-Thornburg J, Capen CC, Cho JY, Xing S, Ledent C. Targeted expression of the RET/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology. 1996;137:375–8.

    Article  CAS  PubMed  Google Scholar 

  28. Santoro M, Chiappetta G, Cerrato A, Salvatore D, Zhang L, Manzo G, Picone A, Portella G, Santelli G, Veccio G, Fusco A. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene. 1996;12:1821–6.

    CAS  PubMed  Google Scholar 

  29. Marotta V, Guerra A, Sapio MR, Vitale M. RET/PTC rearrangement in benign and malignant thyroid disease: a clinical standpoint. Eur J Endocrinol. 2011;165:499–507.

    Article  CAS  PubMed  Google Scholar 

  30. Elisei R, Romei C, Vorontsova T, Cosci B, Veremeychik V, Kuchinskaya E, Basolo F, Demidchik EP, Miccoli P, Pinchera A, Pacini F. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab. 2001;86(7):3211–6.

    CAS  PubMed  Google Scholar 

  31. Guerra A, Sapio MR, Marotta V, Campanile E, Moretti MA, Deandrea M, Motta M, Limone PP, Fenzi G, Rossi G, Vitale M. Prevalence of RET/PTC rearrangement in benign and malignant thyroid nodules and its clinical application. Endocr J. 2011;58:31–8.

    Article  CAS  PubMed  Google Scholar 

  32. Placzkowski KA, Reddi HV, Grebe SK, Eberardt NL, McIver B. The role of the PAX8/PPARgamma fusion oncogene in thyroid cancer. PPAR Res. 2008;2008:672829.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Eberhardt NL, Grebe SKG, McIver B, Reddi HV. The role of the PAX8/PPARγ fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol. 2010;321:50–6.

    Article  CAS  PubMed  Google Scholar 

  34. Walerych D, Lisek K, Del Sal G. Mutant p53: one, no one, and one hundred thousand. Front Oncol. 2015;5:289.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sastre-Perona A, Santisteban P. Role of the Wnt pathway in thyroid cancer. Front Endocrinol. 2012;3:31.

    Article  CAS  Google Scholar 

  36. Ducharte Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2015;15:300093–7.

    Google Scholar 

  37. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398:422–6.

    Article  CAS  PubMed  Google Scholar 

  38. Kremenevskaja N, von Wasielewski R, Rao AS, Schofl C, Andersson T, Barbant G. Wnt5a has tumor suppressor activity in thyroid carcinoma. Oncogene. 2005;24:2144–54.

    Article  CAS  PubMed  Google Scholar 

  39. Tartari CJ, Donadoni C, Manieri E, Mologni L, Mina PD, Villa A, Gambacorti-Passerini C. Dissection of the RET/beta-catenin interaction in the TPC1 thyroid cancer cell line. Am J Cancer Res. 2011;1:716–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2005;102:19075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee JC, Gundara JS, Glover A, Serpell J, Sidhu SB. MicroRNA expression profiles in the management of papillary thyroid cancer. Oncologist. 2014;19:1141–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Faam B, Ghaffari MA, Ghadiri A, Azizi F. Epigenetic modifications in human thyroid cancer. Biomed Rep. 2015;3:3–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Seeböck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Seeböck, R., Haybaeck, J., Tsybrovskyy, O. (2017). Molecular Aspects of Thyroid Carcinogenesis. In: Haybaeck, J. (eds) Mechanisms of Molecular Carcinogenesis – Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-53659-0_10

Download citation

Publish with us

Policies and ethics