Skip to main content

Miniature Spherical Sapphire Anvil Cell for Small Angle Neutron Scattering

  • Chapter
  • First Online:
Correlations in Condensed Matter under Extreme Conditions

Abstract

We report the design of a compact sapphire anvil cell for small angle neutron scattering. Based on turnbuckle-opposed anvil technique, the dimensions of this cell are minimized for use with a small-bore magnets using finite element analysis. This cell is the smallest sapphire anvil cell to date. The cell body is approximately 14 mm diameter cylinder and 13 mm length, the overall length of the assembled cell is less than 17 mm. Inside the cell, two spherical-shaped sapphire anvils are used to ensure compactness and anvil’s strength, and at the same time to provide sufficient sample volume for a neutron scattering experiment. The sample volume of the cell used in the SANS experiment was as large as 0.4 mm\(^{3}\), which is approximately 40 times larger than the conventional diamond anvil cell. The cell has been used in a SANS study of a niobium single crystal at D22 Institut Laue-Langevin with the maximum pressure of 4 GPa being achieved with the liquid pressure medium. During the tests the cell demonstrated that it was capable of achieving pressure to 6 GPa with a powder sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Vennemann, M.D. Lechner, R.C. Oberthür, Polymer 28(10), 1738 (1987). DOI 10.1016/0032-3861(87)90018-8

  2. H. Takeno, M. Nagao, Y. Nakayama, H. Hasegawa, T. Hashimoto, H. Seto, M. Imai, Polym. J. 29(11), 931 (1997). DOI 10.1295/polymj.29.931

  3. G. Pépy, P. Baroni, J. Appl. Cryst. 36(3 Part 1), 814 (2003). DOI 10.1107/S0021889803003935

  4. M. Bonetti, P. Calmettes, Rev. Sci. Instrum. 75(2), 440 (2004). DOI 10.1063/1.1637434

  5. M. Bonetti, P. Calmettes, Rev. Sci. Instrum. 76(4), 043903 (2005). DOI 10.1063/1.1884325

  6. A. Gabke, J. Kraineva, R. Köhling, R. Winter, J. Phys.: Cond. Matter 17(40), S3077 (2005). DOI 10.1088/0953-8984/17/40/011

  7. C. Pfleiderer, A.D. Huxley, S.M. Hayden, J. Phys.: Cond. Matter 17(40), S3111 (2005). DOI 10.1088/0953-8984/17/40/014

  8. J. Kohlbrecher, A. Bollhalder, R. Vavrin, G. Meier, Rev. Sci. Instrum. 78(12), 125101 (2007). DOI 10.1063/1.2817632

  9. I.N. Goncharenko, High Press. Res. 24(1), 193 (2004). DOI 10.1080/08957950410001661882

  10. C. Martin, C.C. Agosta, S.W. Tozer, H.A. Radovan, T. Kinoshota, M. Tokumoto, J. Low Temp. Phys. 138(5), 1025 (2005). DOI 10.1007/s10909-004-2898-8

  11. M. Kano, N. Kurita, M. Hedo, Y. Uwatoko, S.W. Tozer, H.S. Suzuki, T. Onimaru, T. Sakakibara, J. Phys. Soc. Jpn. 76(Suppl. A), 56 (2007). DOI 10.1143/JPSJS.76SA.56

  12. D.E. Graf, R.L. Stillwell, K.M. Purcell, S.W. Tozer, High Press. Res. 31(4), 533 (2011). DOI 10.1080/08957959.2011.633909

  13. M. Kano, H. Mori, K. Matsubayashi, M. Itoi, M. Hedo, T.P. Murphy, S.W. Tozer, Y. Uwatoko, T. Nakamura, J. Phys. Soc. Jpn. 81(2), 024716 (2012). DOI 10.1143/JPSJ.81.024716

  14. L. Chen, N. Kurita, M. Hedo, K. Nakazawa, I. Oguro, Y. Uwatoko, T. Matsumura, M. Tokumoto, S.W. Tozer, J. Phys. Soc. Jpn. 76(Suppl. A), 58 (2007). DOI 10.1143/JPSJS.76SA.58

  15. G. Giriat, W. Wang, J.P. Attfield, A.D. Huxley, K.V. Kamenev, Rev. Sci. Instrum. 81(7), 073905 (2010). DOI 10.1063/1.3465311

  16. R.A. Forman, G.J. Piermarini, J.D. Barnett, S. Block, Science 176(4032), 284 (1972). DOI 10.1126/science.176.4032.284

  17. W.F. Kuhs, H. Ahsbahs, D. Londono, J.L. Finney, Physica B: Condens. Matter 156, 684 (1989). DOI 10.1016/0921-4526(89)90763-1

  18. K.J. Takano, M. Wakatsuki, Rev. Sci. Instrum. 62(6), 1576 (1991). DOI 10.1063/1.1142435

  19. W.B. Daniels, M. Lipp, D. Strachan, D. Winters, Z. Yu, in XIII AIRAPT International Conference on High Pressure Science and Technology (1992), p. 809

    Google Scholar 

  20. W.F. Kuhs, F.C. Bauer, R. Hausmann, H. Ahsbahs, R. Dorwarth, K. Hölzer, High Press. Res. 14(4–6), 341 (1996). DOI 10.1080/08957959608201420

  21. W.F. Kuhs, F.C. Bauer, H. Ahsbahs, G.J. McIntyre, Rev. High Press. Sci. Tech. 7, 307 (1998). DOI 10.4131/jshpreview.7.307

  22. E.R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik, Sapphire Material, Manufacturing, Applications (Springer, New York, 2009)

    Google Scholar 

  23. A.T. Holmes, G.R. Walsh, E. Blackburn, E.M. Forgan, M. Savey-Bennett, Rev. Sci. Instrum. 83(2), 023904 (2012). DOI 10.1063/1.3688657

  24. S. Klotz, Techniques in high pressure neutron scattering (CRC Press, New York, 2012)

    Google Scholar 

  25. M. Eremets, High Pressure Experimental Methods (Oxford University Press, Oxford, 1996)

    Google Scholar 

Download references

Acknowledgements

The work presented in this manuscript, as well as many other examples of the instrumentation development for high pressure research, were inspired by Professor Renato Pucci (University of Catania, Italy), whose continuing quest for understanding properties of electronic materials pushed the boundaries of knowledge in this field of fundamental importance. The work was supported by funding from the Engineering and Physical Science Research Council of the United Kingdom (EPSRC). The authors would like to express their gratitude to Robert Louden and David McCabe for their technical assistance during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kamenev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, X., Parzyk, N.A., Paul, D.M., Dewhurst, C.D., Giriat, G., Kamenev, K.V. (2017). Miniature Spherical Sapphire Anvil Cell for Small Angle Neutron Scattering. In: Angilella, G., La Magna, A. (eds) Correlations in Condensed Matter under Extreme Conditions. Springer, Cham. https://doi.org/10.1007/978-3-319-53664-4_17

Download citation

Publish with us

Policies and ethics