Skip to main content

MeCP2, A Modulator of Neuronal Chromatin Organization Involved in Rett Syndrome

  • Chapter
  • First Online:
Neuroepigenomics in Aging and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 978))

Abstract

From an epigenetic perspective, the genomic chromatin organization of neurons exhibits unique features when compared to somatic cells. Methyl CpG binding protein 2 (MeCP2), through its ability to bind to methylated DNA, seems to be a major player in regulating such unusual organization. An important contribution to this uniqueness stems from the intrinsically disordered nature of this highly abundant chromosomal protein in neurons. Upon its binding to methylated/hydroxymethylated DNA, MeCP2 is able to recruit a plethora of interacting protein and RNA partners. The final outcome is a highly specialized chromatin organization wherein linker histones (histones of the H1 family) and MeCP2 share an organizational role that dynamically changes during neuronal development and that it is still poorly understood. MeCP2 mutations alter its chromatin-binding dynamics and/or impair the ability of the protein to interact with some of its partners, resulting in Rett syndrome (RTT). Therefore, deciphering the molecular details involved in the MeCP2 neuronal chromatin arrangement is critical for our understanding of the proper and altered functionality of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

ATRX:

α-Thalassemia mental retardation X linked

ChIP-seq:

Chromatin immunoprecipitation and sequencing

CREB:

cAMP response element-binding protein

CTCF:

CCCTC-binding factor

CTD:

C-terminal domain

Dlk1:

Delta-like 1 homolog (Drosophila)

Dlx:

Distal-less homeobox

DNMT:

DNA (cytosine-5)-methyltransferase 1

Gtl2:

Gene trap locus 2

HDAC:

Histone deacetylases

ICR:

Imprinting control region

ID:

Intervening domain

IDP:

Intrinsically disordered protein

Igf2:

Insulin-like growth factor 2

MBD:

Methyl-binding domain

MeCp2:

Methyl CpG binding protein

MoRF:

Molecular recognition features

N-CoR:

Nuclear receptor corepressor 1

NCP:

Nucleosome core particle

NLS:

nuclear localization signal

NRL:

Nucleosome repeat length

NTD:

N-terminal domain

PTM:

Posttranslational modification

RTT:

Rett syndrome

SIN3A:

Switch-independent 3a

TET:

Ten-eleven translocation

TRD:

Transcriptional repressor domain

WDR:

WW domain-binding region

References

  1. Guy J, Cheval H, Selfridge J, Bird A. The role of MeCP2 in the brain. Annu Rev Cell Dev Biol. 2011;27:631–52.

    Article  CAS  PubMed  Google Scholar 

  2. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell. 1992;69(6):905–14.

    Article  CAS  PubMed  Google Scholar 

  3. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185–8.

    Article  CAS  PubMed  Google Scholar 

  4. Percy AK, Lane JB. Rett syndrome: model of neurodevelopmental disorders. J Child Neurol. 2005;20(9):718–21.

    Article  PubMed  Google Scholar 

  5. Chen RZ, Akbarian S, Tudor M, Jaenisch R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet. 2001;27(3):327–31.

    Article  CAS  PubMed  Google Scholar 

  6. Luikenhuis S, Giacometti E, Beard CF, Jaenisch R. Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci U S A. 2004;101(16):6033–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nan X, Tate P, Li E, Bird A. DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol. 1996;16(1):414–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell. 1997;88(4):471–81.

    Article  CAS  PubMed  Google Scholar 

  9. Chahrour M, Jung SY, Shaw C, Zhou X, Wong STC, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320(5880):1224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghosh RP, Horowitz-Scherer RA, Nikitina T, Shlyakhtenko LS, Woodcock CL. MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol Cell Biol. 2010;30(19):4656–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Skene PJ, Illingworth RS, Webb S, Kerr ARW, James KD, Turner DJ, et al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell. 2010;37(4):457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cohen S, Gabel HW, Hemberg M, Hutchinson AN, Sadacca LA, Ebert DH, et al. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron. 2011;72(1):72–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mellén M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012;151(7):1417–30.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci. 2014;17(2):215–22.

    Article  CAS  PubMed  Google Scholar 

  15. Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJM, et al. A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet. 2004;36(4):339–41.

    Article  CAS  PubMed  Google Scholar 

  16. Ausió J, Martínez de Paz A, Esteller M. MeCP2: the long trip from a chromatin protein to neurological disorders. Trends Mol Med. 2014;20(9):487–98.

    Article  PubMed  Google Scholar 

  17. Das S, Mukhopadhyay D. Intrinsically unstructured proteins and neurodegenerative diseases: conformational promiscuity at its best. IUBMB Life. 2011;63(7):478–88.

    Article  CAS  PubMed  Google Scholar 

  18. Hansen JC, Ghosh RP, Woodcock CL. Binding of the Rett syndrome protein, MeCP2, to methylated and unmethylated DNA and chromatin. IUBMB Life. 2010;62(10):732–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gsponer J, Futschik ME, Teichmann SA, Babu MM. Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science. 2008;322(5906):1365–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol. 2005;6(3):197–208.

    Article  CAS  PubMed  Google Scholar 

  21. Van Esch H, Bauters M, Ignatius J, Jansen M, Raynaud M, Hollanders K, et al. Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males. Am J Hum Genet. 2005;77(3):442–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. del Gaudio D, Fang P, Scaglia F, Ward PA, Craigen WJ, Glaze DG, et al. Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet Med. 2006;8(12):784–92.

    Article  PubMed  Google Scholar 

  23. Collins AL, Levenson JM, Vilaythong AP, Richman R, Armstrong DL, Noebels JL, et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet. 2004;13(21):2679–89.

    Article  CAS  PubMed  Google Scholar 

  24. Samaco RC, Nagarajan RP, Braunschweig D, LaSalle JM. Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders. Hum Mol Genet. 2004;13(6):629–39.

    Article  CAS  PubMed  Google Scholar 

  25. Pohodich AE, Zoghbi HY. Rett syndrome: disruption of epigenetic control of postnatal neurological functions. Hum Mol Genet. 2015;24(R1):R10–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chao H-T, Zoghbi HY. MeCP2: only 100% will do. Nat Neurosci. 2012;15(2):176–7.

    Article  CAS  PubMed  Google Scholar 

  27. Adams VH, McBryant SJ, Wade PA, Woodcock CL, Hansen JC. Intrinsic disorder and autonomous domain function in the multifunctional nuclear protein, MeCP2. J Biol Chem. 2007;282(20):15057–64.

    Article  CAS  PubMed  Google Scholar 

  28. Ho KL, McNae IW, Schmiedeberg L, Klose RJ, Bird AP, Walkinshaw MD. MeCP2 binding to DNA depends upon hydration at methyl-CpG. Mol Cell. 2008;29(4):525–31.

    Article  CAS  PubMed  Google Scholar 

  29. Baker SA, Chen L, Wilkins AD, Yu P, Lichtarge O, Zoghbi HY. An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell. 2013;152(5):984–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghosh RP, Nikitina T, Horowitz-Scherer RA, Gierasch LM, Uversky VN, Hite K, et al. Unique physical properties and interactions of the domains of methylated DNA binding protein 2. Biochemistry. 2010;49(20):4395–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nikitina T, Shi X, Ghosh RP, Horowitz-Scherer RA, Hansen JC, Woodcock CL. Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Mol Cell Biol. 2007;27(3):864–77.

    Article  CAS  PubMed  Google Scholar 

  32. Becker A, Allmann L, Hofstätter M, Casà V, Weber P, Lehmkuhl A, et al. Direct homo- and hetero-interactions of MeCP2 and MBD2. PLoS One. 2013;8(1):e53730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buschdorf JP, Strätling WH. A WW domain binding region in methyl-CpG-binding protein MeCP2: impact on Rett syndrome. J Mol Med (Berl). 2004;82(2):135–43.

    Article  CAS  Google Scholar 

  34. Nan X, Meehan RR, Bird A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 1993;21(21):4886–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bellini E, Pavesi G, Barbiero I, Bergo A, Chandola C, Nawaz MS, et al. MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis? Front Cell Neurosci. 2014;8(August):236.

    PubMed  PubMed Central  Google Scholar 

  36. Ebert DH, Gabel HW, Robinson ND, Kastan NR, Hu LS, Cohen S, et al. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature. 2013;499(7458):341–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kimura H, Shiota K. Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1. J Biol Chem. 2003;278(7):4806–12.

    Article  CAS  PubMed  Google Scholar 

  38. Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC. Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem. 2003;278(34):32181–8.

    Article  CAS  PubMed  Google Scholar 

  39. Fraga MF, Ballestar E, Montoya G, Taysavang P, Wade PA, Esteller M. The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties. Nucleic Acids Res. 2003;31(6):1765–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci U S A. 2005;102(49):17551–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):1237905.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76.

    Article  CAS  PubMed  Google Scholar 

  43. Cohen S, Greenberg ME. A bird’s-eye view of MeCP2 binding. Mol Cell. 2010;37(4):451–2.

    Article  CAS  PubMed  Google Scholar 

  44. Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease. Nat Med. 2012;18(8):1194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zovkic IB, Guzman-Karlsson MC, Sweatt JD. Epigenetic regulation of memory formation and maintenance. Learn Mem. 2013;20(2):61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thambirajah AA, Ng MK, Frehlick LJ, Li A, Serpa JJ, Petrotchenko EV, et al. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain. Nucleic Acids Res. 2012;40(7):2884–97.

    Article  CAS  PubMed  Google Scholar 

  47. Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature. 2015;522(7554):89–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PWTC, Bauer C, et al. Dynamic readers for 5-(Hydroxy)methylcytosine and its oxidized derivatives. Cell. 2013;152(5):1146–59.

    Article  CAS  PubMed  Google Scholar 

  49. Khrapunov S, Warren C, Cheng H, Berko ER, Greally JM, Brenowitz M. Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry. 2014;53(21):3379–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ballestar E, Yusufzai TM, Wolffe AP. Effects of rett syndrome mutations of the Methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Biochemistry. 2000;39(24):7100–6.

    Article  CAS  PubMed  Google Scholar 

  51. Stuss DP, Cheema M, Ng MK, Martinezde Paz A, Williamson B, Missiaen K, et al. Impaired in vivo binding of MeCP2 to chromatin in the absence of its DNA methyl-binding domain. Nucleic Acids Res. 2013;41(9):4888–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Van Holde K. Chromatin. New York: Springer; 1988.

    Google Scholar 

  53. Chandler SP, Guschin D, Landsberger N, Wolffe AP. The methyl-CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA. Biochemistry. 1999;38(22):7008–18.

    Article  CAS  PubMed  Google Scholar 

  54. Buschhausen G, Wittig B, Graessmann M, Graessmann A. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci U S A. 1987;84(5):1177–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Simpson RT, Thoma F, Brubaker JM. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell. 1985;42(3):799–808.

    Article  CAS  PubMed  Google Scholar 

  56. Nikitina T, Ghosh RP, Horowitz-Scherer RA, Hansen JC, Grigoryev SA, Woodcock CL. MeCP2-chromatin interactions include the formation of chromatosome-like structures and are altered in mutations causing Rett syndrome. J Biol Chem. 2007;282(38):28237–45.

    Article  CAS  PubMed  Google Scholar 

  57. Klose RJ, Sarraf SA, Schmiedeberg L, SM MD, Stancheva I, Bird AP. DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG. Mol Cell. 2005;19(5):667–78.

    Article  CAS  PubMed  Google Scholar 

  58. Hite KC, Kalashnikova AA, Hansen JC. Coil-to-helix transitions in intrinsically disordered methyl CpG binding protein 2 and its isolated domains. Protein Sci. 2012;21(4):531–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bah A, Forman-Kay JD. Modulation of intrinsically disordered protein function by post-translational modifications. J Biol Chem. 2016;291(13):6696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ausió J. MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction. Clin Epigenetics. 2016;8(1):58.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Becker A, Zhang P, Allmann L, Meilinger D, Bertulat B, Eck D, et al. Poly(ADP-ribosyl)ation of methyl CpG binding domain protein 2 regulates chromatin structure. J Biol Chem. 2016;291(10):M115.698357.

    Article  Google Scholar 

  62. Stefanelli G, Gandaglia A, Costa M, Cheema MS, Di Marino D, Barbiero I, et al. Brain phosphorylation of MeCP2 at serine 164 is developmentally regulated and globally alters its chromatin association. Sci Rep. 2016;6(March):28295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gonzales ML, Adams S, Dunaway KW, LaSalle JM. Phosphorylation of distinct sites in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation. Mol Cell Biol. 2012;32(14):2894–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci. 2013;16(7):898–902.

    Article  CAS  PubMed  Google Scholar 

  65. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–9.

    Article  CAS  PubMed  Google Scholar 

  66. Agarwal N, Hardt T, Brero A, Nowak D, Rothbauer U, Becker A, et al. MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation. Nucleic Acids Res. 2007;35(16):5402–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665–80.

    Article  CAS  PubMed  Google Scholar 

  69. Rowley MJ, Corces VG. The three-dimensional genome: principles and roles of long-distance interactions. Curr Opin Cell Biol. 2016;40:8–14.

    Article  CAS  PubMed  Google Scholar 

  70. Horike S, Cai S, Miyano M, Cheng J-F, Kohwi-Shigematsu T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet. 2005;37(1):31–40.

    CAS  PubMed  Google Scholar 

  71. Schüle B, Li HH, Fisch-Kohl C, Purmann C, Francke U. DLX5 and DLX6 expression is biallelic and not modulated by MeCP2 deficiency. Am J Hum Genet. 2007;81(3):492–506.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kernohan KD, Jiang Y, Tremblay DC, Bonvissuto AC, Eubanks JH, Mann MRW, et al. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Dev Cell. 2010;18(2):191–202.

    Article  CAS  PubMed  Google Scholar 

  73. Kernohan KD, Vernimmen D, Gloor GB, Bérubé NG. Analysis of neonatal brain lacking ATRX or MeCP2 reveals changes in nucleosome density, CTCF binding and chromatin looping. Nucleic Acids Res. 2014;42(13):8356–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Murrell A, Heeson S, Reik W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet. 2004;36(8):889–93.

    Article  CAS  PubMed  Google Scholar 

  75. Court F, Camprubi C, Garcia C, Guillaumet-Adkins A, Sparago A, Seruggia D, et al. The PEG13-DMR and brain-specific enhancers dictate imprinted expression within the 8q24 intellectual disability risk locus. Epigenetics Chromatin. 2014;7(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P, et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature. 2009;460(7253):410–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mishiro T, Ishihara K, Hino S, Tsutsumi S, Aburatani H, Shirahige K, et al. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J. 2009;28(9):1234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jaeger AW, Kuenzle CC. The chromatin repeat length of brain cortex and cerebellar neurons changes concomitant with terminal differentiation. EMBO J. 1982;1(7):811–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pearson EC, Bates DL, Prospero TD, Thomas JO. Neuronal nuclei and glial nuclei from mammalian cerebral cortex. Nucleosome repeat lengths, DNA contents and H1 contents. Eur J Biochem. 1984;144(2):353–60.

    Article  CAS  PubMed  Google Scholar 

  80. Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet. 2002;11(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  81. Tudor M, Akbarian S, Chen RZ, Jaenisch R. Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci U S A. 2002;99(24):15536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jordan C, Li HH, Kwan HC, Francke U. Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets. BMC Med Genet. 2007;8:36.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ishibashi T, Thambirajah A, Ausió J. MeCP2 preferentially binds to methylated linker DNA in the absence of the terminal tail of histone H3 and independently of histone acetylation. FEBS Lett. 2008;582(7):1157–62.

    Article  CAS  PubMed  Google Scholar 

  84. Galvão TC, Thomas JO. Structure-specific binding of MeCP2 to four-way junction DNA through its methyl CpG-binding domain. Nucleic Acids Res. 2005;33(20):6603–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC, Koster AJ, et al. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci U S A. 1998;95(24):14173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Misteli T, Gunjan A, Hock R, Bustin M, Brown DT. Dynamic binding of histone H1 to chromatin in living cells. Nature. 2000;408(6814):877–81.

    Article  CAS  PubMed  Google Scholar 

  87. Kumar A, Kamboj S, Malone BM, Kudo S, Twiss JL, Czymmek KJ, et al. Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo. J Cell Sci. 2008;121(Pt 7):1128–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Canadian Institutes of Health Research (CIHR) MOP-97878 grant to JA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ausió .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Martínez de Paz, A., Ausió, J. (2017). MeCP2, A Modulator of Neuronal Chromatin Organization Involved in Rett Syndrome. In: Delgado-Morales, R. (eds) Neuroepigenomics in Aging and Disease. Advances in Experimental Medicine and Biology(), vol 978. Springer, Cham. https://doi.org/10.1007/978-3-319-53889-1_1

Download citation

Publish with us

Policies and ethics