Skip to main content

Bimolecular Reactions

  • Chapter
  • First Online:
Applications of Quantum Dynamics in Chemistry

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 98))

  • 1620 Accesses

Abstract

Another class of important elementary processes in chemistry are bimolecular processes, i.e. processes where two molecules collide and exchange energy, atoms or groups of atoms. Understanding these elementary processes at their most fundamental level is a challenging task of tremendous practical importance for industrial reasons, if the elementary process is the rate determining step of an important industrial chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(R_1\) \(\in \) [0.6, 6.60], \(R_2\) \(\in \) [1.0, 9.80] a.u., 51, 81, and 31 functions are used for \(R_1\), \(R_2\), and \(\theta \), respectively.

  2. 2.

    \(R_2\) is the contracted degree of freedom and we used 12 single particle potentials (SPPs) for \(R_2\) and 7 also for \(\theta \). At the end, we have thus 84 terms in the fit (see Eq. (8.350z)) with three degrees of freedom. We used 16 iterations to improve the relevant region defined as the geometries corresponding to a potential energy below 4 eV above the minimum. This guarantees a root-mean-square (rms) error of 3.84 meV on the relevant region.

  3. 3.

    In Fig. 8.5 \(r_d\) and \(r_v\) correspond to \(R_2\) and \(R_1\), respectively.

  4. 4.

    The formula given for \({\vert \Delta (E) \vert }^2\) is valid only for a vanishing potential. In practice, \({\vert \Delta (E) \vert }^2\) is computed numerically by incorporating the tail of the potential.

  5. 5.

    The presence of the zero point energy of H\(_2\), which changes along the reaction coordinate, can also impact the process in a way that has no classical counterpart.

  6. 6.

    Reprinted with permission from [8]. Copyright 1999, American Institute of Physics.

  7. 7.

    Here and for the following plot we are only interested in the \(t = 0\) figure. Hence do not press ‘enter’ to advance the wavepacket. Type ‘Ctrl C’ to exit.

  8. 8.

    Submit the command “ps -r” to check which jobs are still running.

References

  1. Zhang JZH (1999) Theory and application of quantum molecular dynamics. World Scientific, Singapore

    Google Scholar 

  2. Siegbahn P, Liu B (1978) An accurate three-dimensional potential energy surface for H\(_3\). J Chem Phys 68:2457

    Article  CAS  Google Scholar 

  3. Truhlar DG, Horowitz CJ (1978) Functional representation of Liu and Siegbahn’s accurate ab initio potential energy calculations for H+H\(_2\). J Chem Phys 68:2466

    Article  CAS  Google Scholar 

  4. Truhlar DG, Horowitz CJ (1979) Erratum: Functional representation of Liu and Siegbahn’s accurate ab initio potential energy calculations for H+H\(_2\). J Chem Phys 71:1514

    Article  Google Scholar 

  5. Johnston GW, Katz B, Tsukiyama K, Bersohn R (1987) Isotopic variants of the H+H\(_2\) reaction. 1. Total reaction cross sections of the H+D\(_2\) and H+HD reactions as a function of relative energy. J Chem Phys 91:5445

    Article  CAS  Google Scholar 

  6. Levene HB, Phillips DL, Nieh J-C, Gerrity DP, Valentini JJ (1988) Measurement of absolute partial reaction cross sections for the hydrogen exchange reaction. Chem Phys Lett 143:317

    Article  CAS  Google Scholar 

  7. Brownsword RA, Hillenkamp M, Laurent T, Volpp H-R, Wolfrum J, Vatsa RK, Yoo H-S (1998) Excitation function and reaction threshold studies of isotope exchange reactions: H+D\(_2\rightarrow \)D+HD and H+D\(_2\)O\(\rightarrow \)D+HOD. J Phys Chem A 101:6448

    Article  Google Scholar 

  8. Jäckle A, Heitz M-C, Meyer H-D (1999) Reaction cross sections for the H+D\(_2(\nu =0,1)\) system for collision up to 2.5 eV: A multiconfiguration time-dependent Hartree wave-packet propagation study. J Chem Phys 110:241

    Google Scholar 

  9. Miller W, Zhang J (1991) How to abserve the elusive resonances in H or D+H\(_2\rightarrow \) H\(_2\) or HD+H reactive scattering. J Phys Chem 95:12

    Article  CAS  Google Scholar 

  10. Miller WH (2006) Including quantum effects in the dynamics of complex (i.e., large) molecular systems. J Chem Phys 125:132305

    Article  Google Scholar 

  11. Charutz DM, Last I, Baer M (1997) The Toeplitz approach to treating three-dimensional reactive exchange processes: Quantum mechanical cross sections and rate constants for the D+H\(_2\) and H+D\(_2\) reactions. J Chem Phys 106:7654

    Article  CAS  Google Scholar 

  12. Truhlar DG, Garrett BC, Klippenstein SJ (1996) Current status of transition-state theory. J Phys Chem 100:12771

    Article  CAS  Google Scholar 

  13. Qiu M, Ren Z, Che L, Dai D, Harich SA, Wang X, Yang X, Xu C, Xie D, Gustafsson M, Skoedje RT, Sun Z, Zhang D-H (2006) Observation of Feshbach resonances in the F+H\(_2\) \(\rightarrow \) HF+H reaction. Science 311:1440

    Article  CAS  Google Scholar 

  14. Sun Z, Zhao B, Liu S, Zhang D-H (2014) Reactive scattering and resonance. In: Molecular quantum dynamics, Gatti F (ed). Springer, Heidelberg

    Google Scholar 

  15. Dulieu O, Krems R, Weidemüller M, Willitsch S (2011) Physics and chemistry of cold molecules. Phys Chem Chem Phys 13:18703

    Article  CAS  Google Scholar 

  16. Quéméner G, Julienne PS (2012) Ultracold molecules under control!. Chem Rev 112:4949

    Article  Google Scholar 

  17. Jin DS, Ye J (2012) Introduction to ultracold molecules: new frontiers in quantum and chemical physics. Chem Rev 112:4801

    Article  CAS  Google Scholar 

  18. Baranov MA, Dalmonte M, Pupillo G, Zoller P (2012) Condensed matter theory of dipolar quantum gases. Chem Rev 112:5012

    Article  CAS  Google Scholar 

  19. Narevicius E, Raizen MG (2012) Toward cold chemistry with magnetically decelerated supersonic beams. Chem Rev 112:4879

    Article  CAS  Google Scholar 

  20. Stuhl BK, Hummon MT, Yeo M, Quéméner G, Bohn JL, Ye J (2012) Evaporative cooling of the dipolar hydroxyl radical. Nature 492:396

    Article  CAS  Google Scholar 

  21. Hutson JM (2000) Ultracold chemsitry. Science 327:788

    Article  Google Scholar 

  22. Lang F, Winkler K, Strauss C, Grimm R, Hescher J (2008) Denschler. Ultracold triplet molecules in the rovibrational ground state. Phys Rev Lett 101:133005

    Article  CAS  Google Scholar 

  23. Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seuuws F, Pillet P (1998) Formation of cold Cs\(_2\) molecules through photoassociation. Phys Rev Lett 80:4402

    Article  CAS  Google Scholar 

  24. Vatasescu M, Dulieu O, Amiot C, Comparat D, Drag C, Kokooline V, Masnou-Seeuws F, Pillet P (2000) Multichannel tunneling in the Cs\(_2\) \(O_{(g)}^{(-)}\) photoassociation spectrum. Phys Rev A 61:044701

    Article  Google Scholar 

  25. Dion CM, Drag C, Dulieu O, Torla BL, Masnou-Seuuws F, Pillet P (2001) Resonant coupling in the formation of ultracold ground state molecules via photoassociation. Phys Rev Lett 86:2253

    Article  CAS  Google Scholar 

  26. Althorpe SC (2010) Setting the trap for reactive resonances. Science 327:1460

    Article  CAS  Google Scholar 

  27. Yang X, Minton TK, Zhang D-H (2012) Rethinking chemical reactions at hyperthermal energies. Science 336:1650

    Article  CAS  Google Scholar 

  28. Welsch R, Huarte-Larrañaga F, Manthe U (2012) State-to-state reaction probabilities within the quantum transition state framework. J Chem Phys 136:064177

    Article  Google Scholar 

  29. Zhao B, Zhang DH, Lee S-Y, Sun Z (2014) Calculation of state-to-state cross sections for triatomic reaction by the multi-configuration time-dependent Hartree method. J Chem Phys 140:164108

    Article  Google Scholar 

  30. Manthe U, Welsch R (2014) Correlation functions for fully or partially state-resolved reactive scattering calculations. J Chem Phys 140:244113

    Article  Google Scholar 

  31. Gatti F, Otto F, Sukiasyan S, Meyer H-D (2005) Rotational excitation cross sections of para-H\(_2\) + para-H\(_2\) collisions. A full-dimensional wave packet propagation study using an exact form of the kinetic energy. J Chem Phys 123:174311

    Article  Google Scholar 

  32. Otto F, Gatti F, Meyer H-D (2012) Rovibrational energy transfer in collisions of H\(_2\) with D\(_2\). A full-dimensional wave packet propagation study. Mol Phys 110:619

    Article  CAS  Google Scholar 

  33. Sukiasyan S, Meyer H-D (2001) On the effect of initial rotation on reactivity. A multi-configuration time-dependent Hartree (MCTDH) wave-packet propagation study on the H+D\(_2\) and D+H\(_2\) reactive scattering systems. J Phys Chem A 105:2604

    Google Scholar 

  34. Sukiasyan S, Meyer H-D (2002) Reaction cross section for the H+D\(_2 (\nu _0=1) \rightarrow \) HD+D and D+H\(_2 (\nu _0=1) \rightarrow \) DH+H systems. A multi-configuration time-dependent Hartree (MCTDH) wave-packet propagation study. J Chem Phys 116:10641

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Gatti .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gatti, F., Lasorne, B., Meyer, HD., Nauts, A. (2017). Bimolecular Reactions. In: Applications of Quantum Dynamics in Chemistry. Lecture Notes in Chemistry, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-53923-2_11

Download citation

Publish with us

Policies and ethics