Skip to main content

The Estimation Method of Strength for Technology-Oriented 3D Printing Parts of Mobile Robots

  • Conference paper
  • First Online:
Automation 2017 (ICA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 550))

Included in the following conference series:

Abstract

Application of Rapid Prototyping technology for manufacturing of robotic parts became possible due to development of Fused Deposition Modeling method. The intensive progress in this method improvement was an effect of interdisciplinary cooperation of material science, physics and production engineers. FDM opened new horizons for many fields of e.g. industrial and medical applications. Production of customized demanding robotic parts requires effective method and reliable materials.

The article presents results of estimation of the robotics part produced using FDM technology. Selection of prototypes of the research components – the grab’s arm and gripper – arose from a potential use of FDM technology in the production of these types of components. The arm and the grab are situated at the end of the kinematic chain of the robot’s manipulator. Thus, they should be light so that any additional load is put on the manipulator’s motors. This has a direct impact on the manipulator’s maximum working load. These types of components, apart from the least possible weight, should have relatively high resistance due to the fact that the robot can grab and lift objects up to 15 kg. The third specification of such objects is their non-standard shape. The arm and the grab must be suitable for carrying out different objects and therefore their non-standard dimensions and shapes make their mass or even ordinary production in standard technologies (for example machining) impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anitha, R., Arunachalam, S., Radhakrishnan, P.: Critical parameters influencing the quality of prototypes in fused deposition modeling. J. Mater. Process. Technol. 118, 385–388 (2001)

    Article  Google Scholar 

  2. Arivazhagan, A., Masood, S.H.: Dynamic mechanical properties of ABS material processed by fused deposition modeling. Int. J. Eng. Res. Appl. 2(3), 2013–2014 (2012)

    Google Scholar 

  3. Bagsik, A., Josupeit, S., Schoeppner, V., Klemp, E.: Mechanical analysis of lightweight constructions manufactured with fused deposition modeling. In: AIP Conference Proceedings, p. 696 (2014)

    Google Scholar 

  4. Bis, J., Kret, M., Płatek, P.: Techniki druku 3D-przykłady zastosowań. Prezentacja podczas Forum Stowarzyszenia PROCAx (2009)

    Google Scholar 

  5. Budzik, G., Markowski, T., Kozik, B., Przeszłowski, Ł., Rzucidło, A., Markowska, O., Zaborniak, M., Dziubek, T., Bernaczek, J., Turek, P., Traciak, J., Cader, M., Tutka, M.: The application of VoxelJet technology to the rapid prototyping gear cast. Arch. Foundry Eng. 14, 87–90 (2014)

    Google Scholar 

  6. Cader, M., Zboiński, M., Budzik, G.: Technologie wytwarzania przyrostowego w praktyce. Mechanik 86(8–9), 762–767 (2013)

    Google Scholar 

  7. Croccolo, D., De Agostinis, M., Olmi, G.: Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30. Comput. Mater. Sci. 79, 506–518 (2013)

    Article  Google Scholar 

  8. Dudek, P., Nieciąg, H.l., Zagórski, K.: Inżynieria odwrotna i szybkie prototypowanie w wytwarzaniu indywidualnych ortez. Materiały konferencyjne I Krajowej Konferencji Naukowej Szybkie prototypowanie: Modelowanie-Wytwarzanie-Pomiary, 16–18 września, Rzeszów-Pstrągowa, pp. 46–48 (2015)

    Google Scholar 

  9. Galanulis, K., Reich, C., Thesing, J., Winter, D.: Optical digitizing by ATOS for press parts and tools. Publikacja wewnętrzna GOM, Braunschweig (2005)

    Google Scholar 

  10. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C.B., Wang, C.C., Shin, Y.C., Zhang, S., Zavattieri, P.D.: The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 69, 65–89 (2015)

    Article  Google Scholar 

  11. Guan, H.W., Savalani, M.M., Gibson, I., Diegel, O.: Influence of fill gap on flexural strength of parts fabricated by curved layer fused deposition modeling. Procedia Technol. 20, 243–248 (2015)

    Article  Google Scholar 

  12. Jaia, P., Kuthe, A.M.: Feasibility study of manufacturing using rapid prototyping: FDM approach. Procedia Eng. 64, 4–11 (2013)

    Google Scholar 

  13. Kumar, S., Dinesh, V., Kannan, N., Sankaranarayanan, G.: Parameter optimization of ABS-M30i Parts produced by fused deposition modeling for minimum surface roughness. Int. J. Curr. Eng. Technol. 3(Special Issue), 93–97 (2014)

    Google Scholar 

  14. Nikzad, M., Masood, S.H., Sbarski, I.: Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater. Des. 32, 3348–3456 (2011)

    Article  Google Scholar 

  15. Marcincinova, L.N., Marcincin, J.N.: Testing of materials for rapid prototyping fused deposition modeling technology. World Acad. Sci. Eng. Technol. 70, 411–414 (2012)

    Google Scholar 

  16. Noorani, R.: Rapid Prototyping: Principles and Applications. Wiley, Hoboken (2006)

    Google Scholar 

  17. Rendong , Lu, Q. , Xiong, Z. , Wang, X. : Rapid prototyping and manufacturing technology: principle, representative technics, applications, and development trends. Tsinghua Sci. Technol. (S1), 1–12 (2014)

    Google Scholar 

  18. Yokozeki, T., Aoki, Y., Ogasawara, T.: Experimental characterization of strength and damage resistance properties of thin-ply carbon fiber/toughened epoxy laminates. Compos. Struct. 82, 382–389 (2008)

    Article  Google Scholar 

  19. Zhang, J.W., Peng, A.H.: Process-parameter optimization for fused deposition modeling based on Taguchi method. Adv. Mater. Res. 538, 444–447 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Cader .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cader, M. (2017). The Estimation Method of Strength for Technology-Oriented 3D Printing Parts of Mobile Robots. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2017. ICA 2017. Advances in Intelligent Systems and Computing, vol 550. Springer, Cham. https://doi.org/10.1007/978-3-319-54042-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54042-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54041-2

  • Online ISBN: 978-3-319-54042-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics