Skip to main content

Bayesian Methods for Microsimulation Models

  • Conference paper
  • First Online:
Bayesian Statistics in Action (BAYSM 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 194))

Included in the following conference series:

Abstract

This article proposes Bayesian methods for microsimulation models and for policy evaluations. In particular, the Bayesian Multinomial Logit and the Bayesian Multinomial Mixed Logit models are presented. They are applied to labour-market choices by single females and single males, enriched with EUROMOD microsimulated information, to evaluate fiscal policy effects. Estimates using the two Bayesian models are reported and compared to the results stemming from a standard approach to the analysis of the phenomenon under consideration. Improvements in model performances, when Bayesian methods are introduced and when random effects are included, are outlined. Finally, ongoing work, based on nonparametric model extensions and on analysis of work choices by couples is briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For evaluations of local reforms see, for instance [2, 15, 16] for Italy, [3] for Italy, Norway and Sweden, [32] for Spain, [5] for France and [10] for Germany.

  2. 2.

    For the sake of simplicity, we identify the Multinomial Logit model (MLM) with a general model in which the underlying utilities depend on individual characteristics, choice attributes and/or variables combining individuals and choices. Sometimes, in econometrics, the latter is considered to be a generalization of the MLM combined with a Conditional Logit model.

  3. 3.

    It can be proved that the difference between two standard i.i.d. Gumbel random variables is a Logistic by means of the characteristic function (c.f.). In general, if \(\varepsilon \sim \mathsf {Gumbel}(0,1)\), its characteristic function is \(\phi _{\varepsilon }(t)=\mathsf {E}(e^{it\varepsilon })=\varGamma (1-i t)\). Thus, \(\phi _{\varepsilon _{i}-\varepsilon _{j}}(t) =\phi _{\varepsilon _{i}}(t)\phi _{\varepsilon _{j}}(-t)=\varGamma (1-i t)\varGamma (1+i t)=\varGamma (1-i t)\varGamma (i t) i t\). By Euler’s reflection formula \(\varGamma (z)\varGamma (1-z)=\frac{\pi }{\sin (\pi z)}\) and by property \(i^{2}=-1\), hence \( \phi _{\varepsilon _{i}-\varepsilon _{j}}(t)=\frac{\pi it}{\sin (\pi i t)}=\frac{\pi t}{-i\sin (\pi i t)} \) which is the c.f. for the Logistic distribution.

  4. 4.

    The form of the choice probability under a MLM model follows from the representation of \(\mathsf {Pr}(Y_{ji}|C)\) as \(\mathsf {Pr}(\mathsf {U}_{ji}>\mathsf {U}_{jh}\,\,\forall \,\,h{=}1,\ldots ,I\,\,\,h\ne i)\), which, for \(h\ne i\), reduces to

    $$\begin{aligned}\pi _{ji}{=}&\mathsf {Pr}(\mathbf {x}_{ji}^{'}\varvec{\beta }{+}\varepsilon _{ji}>\mathbf {x}_{jh}^{'}\varvec{\beta }{+}\varepsilon _{jh}\,\,\forall \,\,h{=}1,\ldots ,I)=\mathsf {Pr}(\varepsilon _{ji}-\varepsilon _{jh}>\mathbf {x}_{jh}^{'}\varvec{\beta }-\mathbf {x}_{ji}^{'}\varvec{\beta }\,\,\forall \,\,h=1,\ldots ,I) \\&=\int _{\varepsilon }\mathsf {I}(\varepsilon _{ji}-\varepsilon _{jh}>\mathbf {x}_{jh}^{'}\varvec{\beta }-\mathbf {x}_{ji}^{'}\varvec{\beta }\,\,\forall \,\,h=1,\ldots ,I)f(\varvec{\varepsilon }_{j})d\varvec{\varepsilon }_{j} \end{aligned}$$

    Assuming that the errors are i.i.d. Gumbel distributed and resorting to the substitution \(t=\exp (-\varepsilon _{ji})\)

    $$\begin{aligned} \pi _{ji}=&\mathsf {Pr}(Y_{ji}=1|C,\varepsilon _{ji})\mathsf {Pr}(\varepsilon _{ji})=\int _{-\infty }^{\infty }\left( \prod _{h\ne i}e^{-e^{-(\varepsilon _{ji}+\mathbf {x}_{ji}^{'}\varvec{\beta }-\mathbf {x}_{jh}^{'}\varvec{\beta })}}\right) e^{-\varepsilon _{ji}}e^{-e^{-\varepsilon _{ji}}}d\varepsilon _{ji}\\ {}&=\int _{-\infty }^{\infty }\left( \prod _{h}e^{-e^{-(\varepsilon _{ji}+\mathbf {x}_{ji}^{'}\varvec{\beta }-\mathbf {x}_{jh}^{'}\varvec{\beta })}}\right) e^{-\varepsilon _{ji}}d\varepsilon _{ji}=\int _{-\infty }^{\infty }\exp \left\{ \sum _{h}e^{-(\varepsilon _{ji}+\mathbf {x}_{ji}^{'}\varvec{\beta }-\mathbf {x}_{jh}^{'}\varvec{\beta })}\right\} e^{-\varepsilon _{ji}}d\varepsilon _{ji}\\ {}&=\int _{-\infty }^{\infty }\exp \left\{ -e^{-\varepsilon _{ji}}\sum _{h}e^{-(\mathbf {x}_{ji}^{'}\varvec{\beta }-\mathbf {x}_{jh}^{'}\varvec{\beta })}\right\} e^{-\varepsilon _{ji}}d\varepsilon _{ji}=\int _{0}^{\infty }\exp \left\{ -t\sum _{h}e^{-(\mathbf {x}_{ji}^{'}\varvec{\beta }-\mathbf {x}_{jh}^{'}\varvec{\beta })}\right\} dt \\&=\frac{\exp (-t\sum _{h}e^{-(\mathbf {x}_{ji}^{'}\varvec{\beta }-\mathbf {x}_{jh}^{'}\varvec{\beta })})}{-\sum _{h}e^{-(\mathbf {x}_{ji}^{'}\varvec{\beta }-\mathbf {x}_{jh}^{'}\varvec{\beta })}}\Big |_{0}^{\infty }=\frac{1}{\sum _{h}e^{-(\mathbf {x}_{ji}^{'}\varvec{\beta }-\mathbf {x}_{jh}^{'}\varvec{\beta })}}=\frac{\exp \{\mathbf {x}_{ji}^{'}\varvec{\beta }\}}{\sum _{h=1}^{I}\exp \{\mathbf {x}_{jh}^{'}\varvec{\beta }\}} \end{aligned}$$

    as proved in [20] p. 63 and in [49], pp. 78–79.

  5. 5.

    Alternatively, as suggested in [49] p. 143, random coefficients can be simply considered as part of the utility error component, inducing correlations among alternative utilities.

  6. 6.

    Some other priors less informative than the Inverse-Wishart can also be considered following [28].

  7. 7.

    This is one way among others to overcome possible limitations [47] due to the restrictive i.i.d. assumption about the random component of the utility function in the MLM. Hence, MMLM allows a proper representation of choice behaviour.

  8. 8.

    This is a crucial feature if microsimulation models have to evaluate policy impacts properly [9].

  9. 9.

    The fiscal policies considered were the ones measured in the EUROMOD model, applied to real data provided by the Bank of Italy from the SHIW-1998. Thus, data were partially microsimulated by EUROMOD, according to the 1998 Italian fiscal policy.

References

  1. Aaberge, R., Colombino, U., Strøm, S.: Labor supply responses and welfare effects of tax reforms. Scand. J. Econ. 97(4), 635–659 (1995)

    Article  MATH  Google Scholar 

  2. Aaberge, R., Colombino, U., Strøm, S.: Labor supply in Italy an empirical analysis of joint household decisions, with taxes and quantity constraints. J. Appl. Econ. 14, 403–422 (1999)

    Article  Google Scholar 

  3. Aaberge, R., Colombino, U., Strøm, S.: Welfare effects of proportional taxation: empirical evidence from Italy, Norway and Sweden. J. Popul. Econ. 13, 595–621 (2000)

    Article  Google Scholar 

  4. Athey, S., Imbens, G.: Discrete Choice Models with Multiple Unobserved Choice Characteristics. Working paper, Harvard University (2007)

    Google Scholar 

  5. Bargain, O.: On Modelling Household Labour Supply with Taxation. IZA DP No. 1455 (2005)

    Google Scholar 

  6. Ben-Akiva, M., Lerman, S.R.: Discrete Choice Analysis. MIT Press, Cambridge (1985)

    Google Scholar 

  7. Bernardo, J., Smith, A.F.M.: Bayesian Theory. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  8. Blundell, R., MaCurdy, T.: Labour supply: a review of alternative approaches. In: Ascenfelter, O., Card, D. (eds.) Handbook of Labour Economics, pp. 1559–1695. North Holland, Amsterdam (1999)

    Google Scholar 

  9. Blundell, R., Duncan, A., McCrae, J., Meghir, C.: The labour market impact of the working families - tax credit. Fisc. Stud. 21, 75–104 (2000)

    Article  Google Scholar 

  10. Bonin, H., Kempe, W., Schneider, H.: Household Labour Supply Effects of Low-Wage Subsidies in Germany. IZA DP, No. 637 (2002)

    Google Scholar 

  11. Bourguignon, F., Spadaro, A.: Microsimulation as a tool for evaluating redistribution policies. J. Econ. Inequal. 4, 77–106 (2006)

    Article  Google Scholar 

  12. Burda, M., Harding, M., Hausman, J.: A Bayesian mixed logit-probit model for multinomial choice. Technical Report, University of Toronto, Department of economics (2008)

    Google Scholar 

  13. Carota, C., Nava, C.R., Soldani, I., Ghiglione, C., Schiaparelli, S.: Statistical models for species richness in the Ross Sea. In: Proceedings of the GRASPA2015 Conference, Bari, pp. 49–52 (2015)

    Google Scholar 

  14. Carota, C., Filippone, M., Leombruni, R., Polettini, S.: Bayesian nonparametric disclosure risk estimation via mixed effects log-linear models. Ann. Appl. Stat. 9, 525–546 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colombino, U.: A new equilibrium simulation procedure with discrete choice models. Int. J. Microsimul. 6(3), 25–49 (2013)

    Google Scholar 

  16. Colombino, U.: Five crossroads on the way to basic income. An Italian tour. Ital. Econ. J. 1, 353–389 (2015)

    Article  Google Scholar 

  17. Cooper, N.J., Sutton, A.J., Abrams, K.R.: Decision analytical economic modelling within a Bayesian framework: application to prophylactic antibiotics use for caesarean section. Stat. Methods Med. Res. 11, 491–512 (2002)

    Article  MATH  Google Scholar 

  18. Creedy, J., Duncan, A.S.: Behavioural microsimulation with labour supply responses. J. Econ. Surv. 16(1), 1–38 (2002)

    Article  Google Scholar 

  19. De Blasi, P., James, L., Lau, J.: Bayesian nonparametric estimation and consistency of mixed multinomial Logit choice models. Bernoulli 16, 679–704 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Domencich, T.A., McFadden, D.: Urban Travel Demand: A Behavioral Analysis. North Holland Publishing, Amsterdam (1975)

    Google Scholar 

  21. Dufrese, F., Gerber, H.U., Shiu, E.S.W.: Risk theory and the gamma process. ASTIN Bull. 10, 47–53 (1991)

    Google Scholar 

  22. Favaro, S., Lijoi, A., Nava, C.R., Nipoti, B., Prünster, I., Teh, Y.W.: On the stick-breaking representation for homogeneous NRMIs. Bayesian Anal. 11, 697–724 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–290 (1928)

    Article  MATH  Google Scholar 

  24. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  25. Gill, J.: Bayesian Methods: A Social Behavioral Sciences Approach, Third edn. Chapman and Hall/CRC, Boca Raton (2014)

    Google Scholar 

  26. Gill, J., Casella, G.: Nonparametric priors for Ordinal Bayesians Social Science Models: Specification and Estimation. Journal of the American Statistical Association 104, 453–464 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gnedenko, B.V.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423–453 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hadfield, J.D.: MCMC methods for multi-response generalized linear mixed models. The MCMCglmm R package. J. Stat. Softw. 33(2), 1–22 (2009)

    MathSciNet  Google Scholar 

  29. Jeffreys, S.H.: Theory of Probability, 3rd edn. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  30. Johnson, N., Kotz, S.: Distributions in Statistics: Continuous Univariate Distributions. Wiley, New York (1970)

    Google Scholar 

  31. Kyung, M., Gill, J., Casella, G.: Estimation in Dirichlet random effects models. Ann. Stat. 28, 979–1009 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Labeaga, J., Oliver, X., Spadaro, A.: Discrete choice models of labour supply, behavioural microsimulation and the Spanish tax reforms. J. Econ. Inequal. 6(3), 247–273 (2008)

    Article  Google Scholar 

  33. Li, G., Haining, R., Richardson, S., Best, N.: Evaluating Neighbourhood Policing using Bayesian Hierarchical Models: No Cold Calling in Peterborough, England, London: Imperial College. http://eprints.ncrm.ac.uk/1824/ (2011). Accessed 12 Aug 2016

  34. Lijoi, A., Prünster, I.: Models beyond the Dirichlet process. In: Bayesian Nonparametrics. Cambridge Series in Statistical and Probabilistic Mathematics, pp. 80–136. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  35. Marschak, J.: Binary choice constraints on random utility indications. In: Arrow, K. (ed.) Stanford Symposium on Mathematical Methods in the Social Sciences, pp. 312–329. Stanford University Press, Stanford (1960)

    Google Scholar 

  36. McCullagh, P., Nelder, J.A.: Generalized Linear Models, second edn. CRC Press, Boca Raton (1989)

    Google Scholar 

  37. McFadden, D.: Conditional logit analysis of qualitative choice behavior. In: Zarembka, P. (ed.) Frontiers in Econometrics, pp. 105–142. Academic Press, New York (1974)

    Google Scholar 

  38. McFadden, D., Train, K.E.: Mixed MNL models of discrete response. J. Appl. Econ. 15, 447–470 (2000)

    Article  Google Scholar 

  39. Nava, C.R.: Some advances in Bayesian modeling and computation. Ph.D thesis (2014)

    Google Scholar 

  40. Polettini, S.: A generalized semiparametric Bayesian Fay-Herriot model for small area estimation shrinking both means and variances. Bayesian Analysis (to appear) (2016)

    Google Scholar 

  41. Robert, C.: The Bayesian Choice: From Decision Theoretic Foundations to Computational Implementation, Second edn. Springer, Berlin (2007)

    Google Scholar 

  42. Roychowdhury, A., Kulis, B.: Gamma Processes, Stick-Breaking, and Variational Inference. arXiv preprint arXiv:1410.1068 (2014)

  43. Rossi, P., Allenby, G., McCulloch, R.: Bayesian Statistics and Marketing. Wiley, New York (2005)

    Book  MATH  Google Scholar 

  44. Rutter, C.M., Miglioretti, D.L., Savarino, J.E.: Bayesian calibration of microsimulation models. J. Am. Stat. Assoc. 104, 1338–1350 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Skrondal, A., Rabe-Hesketh, S.: Generalized Latent Variable Modeling. Chapman & Hall (CRC), Boca Raton (2004)

    Google Scholar 

  46. Spadaro, A.: Micro-simulation and normative policy evaluation: an application to some EU tax benefits systems. J. Public Econ. Theory 7(4), 593–622 (2005)

    Article  Google Scholar 

  47. Stopher, P., Meyburg, A., Brög, W.: Travel behaviour research: a perspective. In: Stopher, P., Meyburg, A., Brög, W. (eds.) New Horizons in Travel Behaviour Research. Lexington Books, Lexington (1981)

    Google Scholar 

  48. Sutherland, H., Figari, F.: EUROMOD: the European Union tax-benefit microsimulation model. Int. J. Microsimul. 6(1), 4–26 (2013)

    Google Scholar 

  49. Train, K.E.: Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  50. van Soest, A.: Structural models of family labor supply: a discrete choice approach. J. Hum. Res. 30, 63–88 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consuelo R. Nava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nava, C.R., Carota, C., Colombino, U. (2017). Bayesian Methods for Microsimulation Models. In: Argiento, R., Lanzarone, E., Antoniano Villalobos, I., Mattei, A. (eds) Bayesian Statistics in Action. BAYSM 2016. Springer Proceedings in Mathematics & Statistics, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-319-54084-9_18

Download citation

Publish with us

Policies and ethics