Skip to main content

Deep Relative Attributes

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10115))

Included in the following conference series:

Abstract

Visual attributes are great means of describing images or scenes, in a way both humans and computers understand. In order to establish a correspondence between images and to be able to compare the strength of each property between images, relative attributes were introduced. However, since their introduction, hand-crafted and engineered features were used to learn increasingly complex models for the problem of relative attributes. This limits the applicability of those methods for more realistic cases. We introduce a deep neural network architecture for the task of relative attribute prediction. A convolutional neural network (ConvNet) is adopted to learn the features by including an additional layer (ranking layer) that learns to rank the images based on these features. We adopt an appropriate ranking loss to train the whole network in an end-to-end fashion. Our proposed method outperforms the baseline and state-of-the-art methods in relative attribute prediction on various coarse and fine-grained datasets. Our qualitative results along with the visualization of the saliency maps show that the network is able to learn effective features for each specific attribute. Source code of the proposed method is available at https://github.com/yassersouri/ghiaseddin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovashka, A., Parikh, D., Grauman, K.: Whittlesearch: image search with relative attribute feedback. In: CVPR (2012)

    Google Scholar 

  2. Branson, S., Beijbom, O., Belongie, S.: Efficient large-scale structured learning. In: CVPR (2013)

    Google Scholar 

  3. Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P., Belongie, S.: Visual recognition with humans in the loop. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 438–451. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_32

    Chapter  Google Scholar 

  4. Lampert, C., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. IEEE TPAMI 36, 453–465 (2014)

    Article  Google Scholar 

  5. Parikh, D., Grauman, K.: Relative attributes. In: CVPR, pp. 503–510 (2011)

    Google Scholar 

  6. Ferrari, V., Zisserman, A.: Learning visual attributes. In: NIPS, pp. 433–440 (2007)

    Google Scholar 

  7. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: CVPR (2009)

    Google Scholar 

  8. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV 42, 145–175 (2001)

    Article  MATH  Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  12. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  13. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: CVPRW, pp. 512–519 (2014)

    Google Scholar 

  14. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  15. Farhadi, A., Hejrati, M., Sadeghi, M.A., Young, P., Rashtchian, C., Hockenmaier, J., Forsyth, D.: Every picture tells a story: generating sentences from images. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 15–29. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_2

    Chapter  Google Scholar 

  16. Tao, R., Smeulders, A.W., Chang, S.F.: Attributes and categories for generic instance search from one example. In: CVPR, pp. 177–186 (2015)

    Google Scholar 

  17. Khan, F., van de Weijer, J., Anwer, R., Felsberg, M., Gatta, C.: Semantic pyramids for gender and action recognition. IEEE TIP 23, 3633–3645 (2014)

    MathSciNet  Google Scholar 

  18. Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: CVPR, pp. 3337–3344 (2011)

    Google Scholar 

  19. Liu, J., Yu, Q., Javed, O., Ali, S., Tamrakar, A., Divakaran, A., Cheng, H., Sawhney, H.: Video event recognition using concept attributes. In: WACV, pp. 339–346 (2013)

    Google Scholar 

  20. Kovashka, A., Grauman, K.: Attribute pivots for guiding relevance feedback in image search. In: ICCV, pp. 297–304 (2013)

    Google Scholar 

  21. Joachims, T.: Optimizing search engines using clickthrough data. In: ACM KDD, pp. 133–142 (2002)

    Google Scholar 

  22. Li, S., Shan, S., Chen, X.: Relative forest for attribute prediction. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 316–327. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37331-2_24

    Chapter  Google Scholar 

  23. Datta, A., Feris, R., Vaquero, D.: Hierarchical ranking of facial attributes. In: FG, pp. 36–42 (2011)

    Google Scholar 

  24. Jayaraman, D., Sha, F., Grauman, K.: Decorrelating semantic visual attributes by resisting the urge to share. In: CVPR, pp. 1629–1636 (2014)

    Google Scholar 

  25. Zhang, H., Berg, A., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: CVPR, vol. 2, pp. 2126–2136 (2006)

    Google Scholar 

  26. Yu, A., Grauman, K.: Fine-grained visual comparisons with local learning. In: CVPR (2014)

    Google Scholar 

  27. Yu, A., Grauman, K.: Just noticeable differences in visual attributes. In: ICCV (2015)

    Google Scholar 

  28. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: NIPS (1989)

    Google Scholar 

  29. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

    Google Scholar 

  30. Zhang, N., Paluri, M., Ranzato, M., Darrell, T., Bourdev, L.: PANDA: pose aligned networks for deep attribute modeling. In: CVPR, pp. 1637–1644 (2014)

    Google Scholar 

  31. Escorcia, V., Carlos Niebles, J., Ghanem, B.: On the relationship between visual attributes and convolutional networks. In: CVPR (2015)

    Google Scholar 

  32. Shankar, S., Garg, V.K., Cipolla, R.: Deep-carving: discovering visual attributes by carving deep neural nets. In: CVPR (2015)

    Google Scholar 

  33. Khan, F.S., Anwer, R.M., Weijer, J., Felsberg, M., Laaksonen, J.: Deep semantic pyramids for human attributes and action recognition. In: Paulsen, R.R., Pedersen, K.S. (eds.) SCIA 2015. LNCS, vol. 9127, pp. 341–353. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19665-7_28

    Chapter  Google Scholar 

  34. Huang, J., Feris, R.S., Chen, Q., Yan, S.: Cross-domain image retrieval with a dual attribute-aware ranking network. In: ICCV (2015)

    Google Scholar 

  35. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: ICML, pp. 89–96 (2005)

    Google Scholar 

  36. Song, Y., Wang, H., He, X.: Adapting deep ranknet for personalized search. In: WSDM (2014)

    Google Scholar 

  37. Wan, J., Wang, D., Hoi, S.C.H., Wu, P., Zhu, J., Zhang, Y., Li, J.: Deep learning for content-based image retrieval: a comprehensive study. In: ACM MM, pp. 157–166 (2014)

    Google Scholar 

  38. Yao, T., Mei, T., Rui, Y.: Highlight detection with pairwise deep ranking for first-person video summarization. In: CVPR (2016)

    Google Scholar 

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  40. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  41. Sandeep, R.N., Verma, Y., Jawahar, C.V.: Relative parts: distinctive parts for learning relative attributes. In: CVPR (2014)

    Google Scholar 

  42. Dieleman, S., Schlter, J., Raffel, C., Olson, E., Snderby, S.K., Nouri, D., Maturana, D., Thoma, M., Battenberg, E., Kelly, J., Fauw, J.D., Heilman, M., diogo149, McFee, B., Weideman, H., takacsg84, peterderivaz, Jon, instagibbs, Rasul, D.K., CongLiu, Britefury, Degrave, J.: Lasagne: first release (2015)

    Google Scholar 

  43. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  44. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010)

    Google Scholar 

  45. Tieleman, T., Hinton, G.: Lecture 6.5–RmsProp: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. (2012)

    Google Scholar 

  46. Verma, Y., Jawahar, C.V.: Exploring locally rigid discriminative patches for learning relative attributes. In: BMVC (2015)

    Google Scholar 

  47. Xiao, F., Jae Lee, Y.: Discovering the spatial extent of relative attributes. In: CVPR (2015)

    Google Scholar 

  48. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9, 85 (2008)

    MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Computer Engineering Department of Sharif University of Technology and HPC center of IPM for their support with computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Souri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Souri, Y., Noury, E., Adeli, E. (2017). Deep Relative Attributes. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10115. Springer, Cham. https://doi.org/10.1007/978-3-319-54193-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54193-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54192-1

  • Online ISBN: 978-3-319-54193-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics