Skip to main content

On Robust Pseudo State Estimation of Fractional Order Systems

  • Chapter
  • First Online:
Positive Systems (POSTA 2016)

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 471))

Included in the following conference series:

Abstract

The goal of this chapter is to design robust observers for fractional dynamic continuous-time linear systems described by pseudo state space representation. The fractional observer is guaranteed to compute a domain enclosing all the system pseudo states that are consistent with the model, the disturbances and the measurement noise realizations. Uncertainties on the initial pseudo state and noises are propagated in a reliable way to estimate the bounds of the fractional pseudo state. Only the bounds of the uncertainties are used and no additional assumptions about their stationarity or ergodicity are taken into account. A fractional observer is firstly built for a particular case where the estimation error can be designed to be positive. Then, the general case is investigated through changes of coordinates. Some numerical simulations illustrate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The order relations \(<, \le , >, \ge \) should be understood componentwise throughout this chapter.

References

  1. Abdelhamid, M., Aoun, M., Najar, S., Abdelhamid, M.N.: Discrete fractional kalman filter. Intell. Control Syst. Signal Process. 2, 520–525 (2009)

    Google Scholar 

  2. Aoun, M., Malti, R., Levron, E., Oustaloup, A.: Orthonormal basis functions for modeling continuous-time fractional systems. In: Elsevier editor, SySId, Rotterdam, Pays bas, 9. IFAC, Elsevier (2003)

    Google Scholar 

  3. Aoun, M., Malti, R., Levron, F., Oustaloup, A.: Numerical simulations of fractional systems: an overview of existing methods and improvements. Nonlinear Dyn. 38(1–4), 117–131 (2004)

    Article  MATH  Google Scholar 

  4. Aoun, M., Najar, S., Abdelhamid, M., Abdelkrim, M.N.: Continuous fractional kalman filter. In: 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD), pp. 1–6, March 2012

    Google Scholar 

  5. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. ISTE, London (2014)

    Book  MATH  Google Scholar 

  6. Baleanu, D., Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, M.C.: Fractional electromagnetic equations using fractional forms. Int. J. Theoret. Phys. 48(11), 3114–3123 (2009)

    Google Scholar 

  7. Battaglia, J.L., Le Lay, L., Batsale, J.C., Oustaloup, A., Cois, O.: Heat flux estimation through inverted non integer identification models. Int. J. Therm. Sci. 39(3), 374–389 (2000)

    Article  Google Scholar 

  8. Bettayeb, M., Djennoune, S.: A note on the controllability and the observability of fractional dynamical systems. Fract. Differ. Appl. 2, 493–498 (2006)

    Google Scholar 

  9. Bode, H.W.: Network Analysis and Feedback Amplifier Design. New York (1945)

    Google Scholar 

  10. Caputo, M.: Linear models of dissipation whose q is almost frequency independent-ii. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  11. Combastel, C.: Stable interval observers in bbc for linear systems with time-varying input bounds. IEEE Trans. Autom. Control 58(2), 481–487 (2013)

    Article  MathSciNet  Google Scholar 

  12. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2008)

    MATH  Google Scholar 

  13. Dugowson, S.: Les différentielles métaphysiques: histoire et philosophie de la généralisation de l’ordre de dérivation. Ph.D. thesis, Université Paris XIII, France (1994)

    Google Scholar 

  14. Dzielinski, A., Sierociuk, D.: Observer for discrete fractional order state-space systems. Fract. Differ. Appl. 2, 511–516 (2006)

    MATH  Google Scholar 

  15. Efimov, D., Raïssi, T., Chebotarev, S., Zolghadri, A.: Interval state observer for nonlinear time-varying systems. Automatica 49(1), 200–205 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gejji, V.: Fractional Calculus: Theory and Applications. Narosa Publishing House, New Delhi (2014)

    Google Scholar 

  17. Guo, T.L.: Controllability and observability of impulsive fractional linear time-invariant system. Comput. Math. Appl. 64(10), 3171–3182 (2012)

    Google Scholar 

  18. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, New Jersey (2014)

    Book  MATH  Google Scholar 

  19. Kaczorek, T.: Fractional positive continuous-time linear systems and their reachability. Int. J. Appl. Math. Comput. Sci. 18(2), 223–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaczorek, T., Rogowski, K.: Fractional linear systems and electrical circuits. In: Studies in Systems, Decision and Control. Springer (2014)

    Google Scholar 

  21. Koh, B.S., Junkins, J.L.: Kalman filter for linear fractional order systems. J. Guidance Control Dyn. 35(6), 1816–1827 (2016)

    Google Scholar 

  22. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity an Introduction to Mathematical Models. Imperial College Press, London Hackensack (2010)

    Book  MATH  Google Scholar 

  23. Malinowska, A.: Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  24. Manabe, S.: The non-integer integral and its application to control systems. Jpn. Inst. Electr. Eng. 6, 83–87 (1961)

    Google Scholar 

  25. Matignon, D.: Stability properties for generalized fractional differential systems. ESAIM Proc. Syst. Différ. Fract. Modèles Méth. Appl. 5, 145–158 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Matignon, D., D’Andrea-Novel, B.: Observer-based controllers for fractional differential systems. IEEE Conf. Decis. Control 5, 4967–4972 (1997)

    Google Scholar 

  27. Matignon, D., DAndrea-Novel, B.: Some results on controllability and observability of finite-dimensional fractional differential systems. Comput. Eng. Syst. Appl. 2, 952–956 (1996)

    Google Scholar 

  28. Mazenc, F., Bernard, O.: Interval observers for linear time-invariant systems with disturbances. Automatica 47(1), 140–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley (1993)

    Google Scholar 

  30. Nelms, R.M., Cahela, D.R., Tatarchuk, B.J.: Modeling double-layer capacitor behavior using ladder circuits. IEEE Trans. Aerosp. Electron. Syst. 39(2), 430–438 (2003)

    Google Scholar 

  31. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (1974)

    Google Scholar 

  32. Oldham, K.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publications, Mineola (2006)

    Google Scholar 

  33. Ortigueira, M.: Fractional Calculus for Scientists and Engineers. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  34. Oustaloup, A.: Linear feedback control systems of fractional order between 1 and 2. In: IEEE Symposium on Circuit and Systems, Chicago, USA (1981)

    Google Scholar 

  35. Oustaloup, A.: La Commande CRONE. Hermes, Paris (1991)

    MATH  Google Scholar 

  36. Oustaloup, A.: La dérivation non Entière: Théorie, Synthèse et Applications. Hermès, Paris (1995)

    MATH  Google Scholar 

  37. Raïssi, T., Efimov, D., Zolghadri, A.: Interval state estimation for a class of nonlinear systems. IEEE Trans. Autom. Control 57(1), 260–265 (2012)

    Article  MathSciNet  Google Scholar 

  38. Sabatier, J., Aoun, M., Oustaloup, A., Grégoire, G., Ragot, F., Roy, P.: Fractional system identification for lead acid battery state of charge estimation. Signal Process. 86(10), 2645–2657 (2006)

    Article  MATH  Google Scholar 

  39. Sabatier, J., Lanusse, P., Melchior, P., Farges, C., Oustaloup, A.: Fractional order differentiation and robust control design: CRONE, H-infinity and motion control (Intelligent Systems, Control and Automation: Science and Engineering). Springer (2015)

    Google Scholar 

  40. Sabatier, J., Moze, M., Farges, C.: LMI stability conditions for fractional order systems. Comput. Math. Appl. 59(5), 1594–1609 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sasso, M., Palmieri, G., Amodio, D.: Application of fractional derivative models in linear viscoelastic problems. Mech. Time-Depend. Mater. 15(4), 367–387 (2011)

    Article  Google Scholar 

  42. Sierociuk, D., Dzielinski, A.: Fractional kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. 16(1), 129 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Tarasov, V.E.: Fractional integro-differential equations for electromagnetic waves in dielectric media. Theoret. Math. Phys. 158(3), 355–359 (2009)

    Google Scholar 

  44. Trigeassou, J.-C., Maamri, N., Sabatier, J., Oustaloup, A.: State variables and transients of fractional order differential systems. Comput. Math. Appl. 64(10), 3117–3140 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tustin, A., Allanson, J.T., Layton, J.M., Jakeways, R.J.: The design of systems for automatic control of the position of massive objects. In: Proceedings of Institution of Electrical Engineers, vol. 105-C, pp. 1–57 (1958)

    Google Scholar 

  46. Wang, Y., Hartley, T.T., Lorenzo, C.F., Adams, J.L., Carletta, J.E., Veillette, R.J.: Modeling ultracapacitors as fractional-order systems. In: Baleanu, D., Guvenc, Z.B., Machado, J.A.T. (eds.) New Trends in Nanotechnology and Fractional Calculus Applications, pp. 257–262. Springer, Netherlands (2010)

    Google Scholar 

Download references

Acknowledgements

This work was developed within the “Research in Paris” project supported by the city of Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Raïssi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raïssi, T., Aoun, M. (2017). On Robust Pseudo State Estimation of Fractional Order Systems. In: Cacace, F., Farina, L., Setola, R., Germani, A. (eds) Positive Systems . POSTA 2016. Lecture Notes in Control and Information Sciences, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-319-54211-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54211-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54210-2

  • Online ISBN: 978-3-319-54211-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics