Skip to main content

Low-Rank Tensor Recovery and Alignment Based on \(\ell _p\) Minimization

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Included in the following conference series:

  • 1871 Accesses

Abstract

In this paper, we propose a framework of non-convex low-rank recovery and alignment for arbitrary tensor data. Specially, by using Schatten-p (\(0<p<1\), the same below) norm and \(\ell _p\) norm to relax the rank function and \(\ell _0\) norm respectively, the model requires much weaker incoherence conditions to guarantee a successful recovery than the common used nuclear norm and \(\ell _1\) norm. At the same time, we adopt a set of transformations which acts on the images of the tensor data to compensate the possible misalignments of images. By solving the optimal transformations, the strict alignments of the images are achieved in the low-rank recovery process. Furthermore, we propose an efficient algorithm based on the method of Alternating Direction Method of Multipliers (ADMM) for the non-convex optimization problem. The extensive experiments on the artificial data sets and real image data sets show the superiority of our method in image alignment and denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25, 218–233 (2003)

    Article  Google Scholar 

  2. Wagner, A., Wright, J., Ganesh, A., Zhou, Z., Mobahi, H., Ma, Y.: Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 34, 372–386 (2012)

    Article  Google Scholar 

  3. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candés, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58, 1–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ganesh, A., Wright, J., Li, X., Candés, E.J., Ma, Y.: Dense error correction for low-rank matrices via principal component pursuit. In: IEEE International Symposium on Information Theory, pp. 1513–1517 (2010)

    Google Scholar 

  6. Zhou, Z., Li, X., Wright, J., Candes, E.J., Ma, Y.: Stable principal component pursuit. In: IEEE International Symposium on Information Theory, pp. 1518–1522 (2010)

    Google Scholar 

  7. Ji, H., Huang, S., Shen, Z., Xu, Y.: Robust video restoration by joint sparse and low rank matrix approximation. SIAM J. Imaging Sci. 4, 1122–1142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2233–2246 (2012)

    Article  Google Scholar 

  9. Zhang, Z., Ganesh, A., Liang, X., Ma, Y.: TILT: transform invariant low-rank textures. Int. J. Comput. Vis. 99, 1–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, X., Cao, X., Chen, X., Ma, Y.: Video editing with temporal, spatial and appearance consistency. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2283–2290 (2013)

    Google Scholar 

  11. Zhang, D., Hu, Y., Ye, J., Li, X., He, X.: Matrix completion by truncated nuclear norm regularization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2192–2199 (2012)

    Google Scholar 

  12. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 208–220 (2013)

    Article  Google Scholar 

  13. Signoretto, M., Plas, R.V.D., Moor, B.D., Suykens, J.A.K.: Tensor versus matrix completion: a comparison with application to spectral data. IEEE Sig. Process. Lett. 18, 403–406 (2011)

    Article  Google Scholar 

  14. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 66, 294–310 (2005)

    Google Scholar 

  15. Huang, B., Mu, C., Goldfarb, D., Wright, J.: Provable low-rank tensor recovery (2014). http://www.optimization-online.org/DB_HTML/2014/02/4252.html

  16. Li, Y., Yan, J., Zhou, Y., Yang, J.: Optimum subspace learning and error correction for tensors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 790–803. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_57

    Chapter  Google Scholar 

  17. Zhang, X., Wang, D., Zhou, Z., Ma, Y.: Simultaneous rectification and alignment via robust recovery of low-rank tensors. In: Advances in Neural Information Processing Systems, pp. 1637–1645 (2013)

    Google Scholar 

  18. Mohan, K., Fazel, M.: Iterative reweighted algorithms for matrix rank minimization. J. Mach. Learn. Res. 13, 3441–3473 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Chen, X., Xu, F., Ye, Y.: Lower bound theory of nonzero entries in solutions of l2-lp Minimization. SIAM J. Sci. Comput. 32, 2832–2852 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qin, L., Lin, Z., She, Y., Zhang, C.: A comparison of typical lp minimization algorithms. Neurocomputing 119, 413–424 (2013)

    Article  Google Scholar 

  21. Zuo, W., Meng, D., Zhang, L., Feng, X., Zhang, D.: A generalized iterated shrinkage algorithm for non-convex sparse coding. In: IEEE International Conference on Computer Vision (ICCV), pp. 217–224 (2013)

    Google Scholar 

  22. Nie, F., Huang, H., Ding, C.: Low-rank matrix recovery via efficient Schatten p-norm minimization. In: AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  23. Marjanovic, G., Solo, V.: On lq optimization and matrix completion. IEEE Trans. Sig. Process. 60, 5714–5724 (2012)

    Article  Google Scholar 

  24. Toh, K.C., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems. Pac. J. Optim. 6(3), 615–640 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23, 643–660 (2001)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by NSFC (Grants nos. 61305035, 61472285, 61511130084, and 61503263), Zhejiang Provincial Natural Science Foundation (Grants nos. LY17F030004, LR17F030001, LY16F020023, LY12F03016), Project of science and technology plans of Zhejiang Province (Grants nos. 2014C31062, 2015C31168). Project of science and technology plans of Wenzhou (Grants No. G20150017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, K., Wang, D., Zhang, X., Gu, N., Jiang, H., Ye, X. (2017). Low-Rank Tensor Recovery and Alignment Based on \(\ell _p\) Minimization. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics