Skip to main content

Introduction

  • Chapter
  • First Online:
Biology of Hevea Rubber

Abstract

Natural rubber has been an essential commodity not only for the tyre industry but also for more than 50,000 products that hold elasticity as an attribute. Rubber is obtained from the exudates of certain tropical plants (natural rubber) or derived from petroleum and natural gas (synthetic rubber). Because of its elasticity, resilience and toughness (Table 1.1), rubber is the basic constituent of tyres used in automotive vehicles, aircraft and bicycles. A car has almost 30% of its components made of rubber. The prime source of natural rubber worldwide is Hevea rubber or Hevea brasiliensis. Some of the alternate sources of rubber are: Manihot glaziovii (Ceara rubber), Manihot dichotoma (Jeque rubber), Castilla elastica (Panama rubber), Ficus elastica (India rubber), Funtimia elastica (Lagos rubber), Landolphia kirkii (Landolphia rubber), Cryptostegia grandiflora and C. madagascariensis (Madagascar rubber), Parthenium argentatum (guayule rubber), Taraxacum kok-saghys (Russian dandelion) (Table 1.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • B.L. Archer, B.G. Audley, in Rubber, Gutta percha and Chicle, ed. by L. P. Miller. Phytochemistry, vol II (Van Nostrand Reinhold Co., New York, 1973), pp. 310–343

    Google Scholar 

  • J. d’Auzac, J.L. Jacob, H. Chrestin, in Physiology of the Rubber Tree Latex, ed. by J. d’Auzac, J. L. Jacob, H. Chrestin.(CRC Press, Boca Raton, 1989b)

    Google Scholar 

  • R.A. Backhaus, Rubber formation in plants – mini review. Isr. J. Bot. 34, 283–293 (1985)

    Google Scholar 

  • C.S.L. Baker, Natural rubber – ab iniio ad futurum. Rubb. Dev. 49, 40–44 (1996)

    CAS  Google Scholar 

  • J.B. van Beilen, Y. Poirier, Production of renewable polymers from crop plants. Plant J. 54, 684–701 (2008)

    Article  PubMed  Google Scholar 

  • K. Berthelot et al., Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes. Biochim. Biophys. Acta Biomembranes 1838, 287–299 (2014)

    Article  CAS  Google Scholar 

  • J.E. Bowers, Natural Rubber-Producing Plants for the United States (National Agricultural Library, Beltsville, 1990)

    Google Scholar 

  • R.A. Buchanan, I.M. Cull, F.H. Otey, C.R. Russell, Hydrocarbon- and rubberproducing crops: evaluation of 100 U.S. plant species. Econ. Bot. 32, 146–153 (1978)

    Article  CAS  Google Scholar 

  • M.E. Carr, M.O. Bagby, Tennessee plant species screened for renewable energy sources. Econ. Bot. 41, 78–85 (1987)

    Article  CAS  Google Scholar 

  • P. Compagnon, in Techniques agricoles et productions tropicales. Le Caoutchouc Naturel: Biologie – Culture – Production (Maisonneuve et Larose, Paris, 1986a), p. 595

    Google Scholar 

  • P. Compagnon, Le Caoutchouc Naturel: Biologie – Culture – Production. Ed. Maisonneuve et Larose, Techniques agricoles et productions tropicales, 595 p (1986b)

    Google Scholar 

  • K. Cornish, Similarities and differences in rubber biochemistry among plant species. Phytochemistry 57, 1123–1134 (2001a)

    Article  CAS  PubMed  Google Scholar 

  • K. Cornish, D.J. Siler, O. Grosjean, N. Goodman, Fundamental similarities in rubber particle architecture and function in three evolutionarily divergent plant species. J. Nat. Rubb. Res. 8, 275–285 (1993)

    Google Scholar 

  • M.J. Dijkman, Hevea: Thirty Years of Research in the Far East (University of Miami Press, Coral Gables, 1951), p. 329

    Google Scholar 

  • J.B. Gomez, S. Hamzah, Particle size distribution in Hevea latex – some observations on the electron microscopic method. J. Nat. Rubb. Res. 4, 204–211 (1989)

    CAS  Google Scholar 

  • B.F. Greek, Rubber demand is expected to grow after 1991. C E News 69, 37–54 (1991)

    Article  Google Scholar 

  • H.M. Hall, T.H. Goodspeed, The Occurrence of Rubber in Certain West American Shrubs (Univ. of California Press, Berkeley, 1919)

    Google Scholar 

  • D.L. Hallahan, N.M. Keiper-Hrynko, Cis-prenyltransferases from the rubber-producing plants Russian dandelion (Taraxacum kok-saghyz) and sunflower (Helianthus annus). US Patent 2004/044173 (2004)

    Google Scholar 

  • V.H. Heywood, Flowering Plants of the World (Oxford University Press, New York, 1978)

    Google Scholar 

  • C.C. Ho, W.L. Ng, Surface study on the rubber particles in pretreated Hevea latex system. Colloid Polym. Sci. 257, 406–412 (1979)

    Article  CAS  Google Scholar 

  • R.J. Hunter, Reconsidering the functions of latex. Trees Struct. Funct. 9, 1–5 (1994)

    Article  Google Scholar 

  • P. John, in Biosynthesis of the Major Crop Products. Rubber (Wiley, Chichester, 1992), pp. 114–126

    Google Scholar 

  • T.M. Lewinsohn, The geographical distribution of plant latex. Chemoecology 2, 64–68 (1991). doi:10.1007/BF01240668

    Article  Google Scholar 

  • C.R. Metcalfe, Distribution of latex in the plant kingdom. Econ. Bot. 21, 115–127 (1967)

    Article  Google Scholar 

  • H. Mooibroek, K. Cornish, Alternative sources of natural rubber. Appl. Microbiol. Biotechnol. 53, 335–365 (2000). doi:10.1007/s002530050030

    Article  Google Scholar 

  • K. Nawamawat, J.T. Sakdapipanich, C.C. Ho, Y. Ma, J. Song, J.G. Vancso, Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf. A. Physiochem. Eng. Asp. 390, 157–166 (2011)

    Article  CAS  Google Scholar 

  • S.K. Oh, H.S. Kang, D.H. Shin, et al., Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J. Biol. Chem. 1999(274), 17132–17138 (1999a). doi:10.1074/jbc.274.24.17132

    Article  Google Scholar 

  • N. Ohya, Y. Tanaka, R. Wititsuwannakul, T. Koyama, Activity of rubber transferase and rubber particle size in Hevea latex. J. Rubb. Res. 3(2000), 214–221 (2000)

    CAS  Google Scholar 

  • T.D. Pendle, P.E. Swinyard, The particle size of natural rubber latex concentrates by photon correlation spectroscopy. J. Nat. Rubb. Res. 6, 1–11 (1991)

    CAS  Google Scholar 

  • L.G. Polhamus, Rubber, Botany, Production, and Utilization (Leonard Hill Limited, London, 1962)

    Google Scholar 

  • E. Pushparajah, in Tree Crop Ecosystems, Ecosytems of the World Series, ed. by F. T. Last. Natural rubber, vol 19 (Elsevier Science, Amsterdam, 2001), pp. 379–407

    Google Scholar 

  • J. Sansatsadeekul, J. Sakdapipanich, P. Rojruthai, Characterization of associated proteins and phospholipids in natural rubber latex. J. Biosci. Bioeng. 111(2011), 628–634 (2011)

    Article  CAS  PubMed  Google Scholar 

  • J.B. Serier, Histoire du caoutchouc (Editions Desjonquères, Paris, 1993), 273 p

    Google Scholar 

  • A. Sharples, The laticiferous system of Hevea brasiliensis and its protective function. Ann. Bot. 32, 247–251 (1918)

    Article  Google Scholar 

  • A.P. Singh, S.G. Wi, G.C. Chung, Y.S. Kim, H. Kang, The micromorphology and protein characterization of rubber particles in Ficus carica, Ficus benghalensis and Hevea brasiliensis. J. Exp. Bot. 54(2003), 985–992 (2003)

    Article  CAS  PubMed  Google Scholar 

  • W.D. Stewart, W.L. Watchel, J.J. Shipman, J.A. Yanko, Synthesis of rubber by fungi. Science 122, 1271–1272 (1955)

    Article  CAS  PubMed  Google Scholar 

  • C. Tang et al., The rubber tree genome reveals new insights into rubber production and species adaptation. Nat. Plants 2, 16073 (2016). doi:10.1038/NPLANTS.2016.73

    Article  CAS  PubMed  Google Scholar 

  • E. Warren-Thomas, P.M. Dolman, D.P. Edwards, Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity. Conserv. Lett. 8, 230–241 (2015). doi:10.1111/conl.12170

    Article  Google Scholar 

  • C.L. Webster, Classification of the Euphorbiaceae. Ann. Missouri Bot. Gard. 81, 3–32 (1994)

    Article  Google Scholar 

  • W.G. Whaley, J.S. Bowen, Russian dandelion (Kok-Saghyz). An emergency source of natural rubber (United States Department of Agriculture, Washington, 1947)

    Google Scholar 

  • D.F. Wood, K. Cornish, Microstructure of purified rubber particles. Int. J. Plant Sci. 161, 435–445 (2000)

    Article  CAS  PubMed  Google Scholar 

  • W.G. Wren, Application of the Langmuir trough to the study of rubber latex Trans. Rubb. Ind. 1, 355–364 (1941)

    Google Scholar 

  • H. Yeang, E. Yip, S. Hamzah, Characterisation of Zone 1 and Zone 2 rubber particles in Hevea brasiliensis latex. J. Nat. Rubb. Res. 10, 108–123 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Priyadarshan, P.M. (2017). Introduction. In: Biology of Hevea Rubber. Springer, Cham. https://doi.org/10.1007/978-3-319-54506-6_1

Download citation

Publish with us

Policies and ethics