Skip to main content

Mapping and Lesioning the Living Brain

  • Chapter
  • First Online:
The Broca-Wernicke Doctrine
  • 1413 Accesses

Abstract

It is now well known that the brain is electrically excitable. Physicians frequently make use of electromagnetic properties to monitor or localize brain functions in patients (e.g. EEG, MRI or electrical stimulation of the brain). However, in the nineteenth century, it was accepted as a fact that the cerebral hemispheres were non-excitable ‘by all common psychologic stimuli’ [1]. This dogma prevailed to such an extent that studies that challenged this concept initially had to be performed outside of the universities [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Young (1970) for details of this dispute [9].

  2. 2.

    Grunbaum changed his name into Leyton in 1915.

  3. 3.

    Quotation taken from Devinsky (1993) [21]

  4. 4.

    The Wada test cannot specify laterality of all language functions, in particular functions that are classically attributed to the postero-temporal and infero-parietal region (such as verbal comprehension) [139]. Possibly, these regions are spared after injection of sodium amytal.

References

  1. Fritsch GT, Hitzig E. Über die elektrische Erregbarkeit des Grosshirns. Arch Anat Phys. 1870;37:300–32.

    Google Scholar 

  2. Carlson C, Devinsky O. The excitable cerebral cortex Fritsch G, Hitzig E. Uber die elektrische Erregbarkeit des Grosshirns. Arch Anat Physiol Wissen 1870;37:300–32. Epilepsy Behav. 2009;15:131–2.

    Google Scholar 

  3. Gross CG. The discovery of motor cortex and its background. J Hist Neurosci. 2007;16:320–31.

    Article  PubMed  Google Scholar 

  4. Boling W, Olivier A, Fabinyi G. Historical contributions to the modern understanding of function in the central area. Neurosurgery. 2002;50:1296–309; discussion 1309.

    Google Scholar 

  5. Aldini G. An account of the late improvements in galvanism with a series of curious and interesting experiments. London: Cuthell and Martin; 1803.

    Google Scholar 

  6. Ferrier D. The functions of the brain. New York: GP Putnam’s Sons; 1886.

    Google Scholar 

  7. Withington ET. Hippocrates: on wounds in the head, vol. 3. Cambridge: Harvard University Press; 1927.

    Google Scholar 

  8. Finger S. Origins of neuroscience: a history of explorations into brain function. New York: Oxford University Press; 2001.

    Google Scholar 

  9. Young RM. Mind, brain and adaptation in the nineteenth century. New York: Oxford University Press; 1970.

    Google Scholar 

  10. Jefferson G. Selected papers. London: Pitman; 1960.

    Google Scholar 

  11. Jackson JH. Notes on the physiology and pathology of the nervous system. Med Times Gaz. 1868;2:696.

    Google Scholar 

  12. York GK, Steinberg DA. Hughlings Jackson’s neurological ideas. Brain. 2011;134:3106–13.

    Article  PubMed  Google Scholar 

  13. Sherrington CS. Sir David Ferrier (1843-1928). London: Oxford University Press; 1937. p. 302.

    Google Scholar 

  14. Horsley V. The Linacre Lecture on the function of the so-called motor area of the brain: delivered to the Master and Fellows of St. John’s College, Cambridge, May 6th, 1909. Br Med J. 1909;2:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grünbaum ASF, Sherrington CS. Observations on the physiology of the cerebral cortex of some of the higher apes. Proc R Soc Lond. 1901;69:206–9.

    Article  Google Scholar 

  16. Lemon RN. An enduring map of the motor cortex. Exp Physiol. 2008;93:798–802.

    Article  CAS  PubMed  Google Scholar 

  17. Archibald E. Surgical affections of the head. In: Bryant JD, Buck AH, editors. American practice of surgery. New York: William Wood and Co.; 1908. p. 3–379.

    Google Scholar 

  18. Phillips CG, Porter R. Corticospinal neurones. Their role in movement. London: Academic Press; 1977. p. 65.

    Google Scholar 

  19. Frohlich A, Sherrington CS. J Physiol. 1901;xxviii.

    Google Scholar 

  20. Leyton ASF, Sherrington CS. Observations on the excitable cortex of the chimpanzee, orang-utan, and gorilla. Exp Physiol. 1917;11:135–222.

    Article  Google Scholar 

  21. Devinsky O, Beric A, Dogali M. Electrical and magnetic stimulation of the brain and spinal cord. New York: Raven Press; 1993.

    Google Scholar 

  22. Sanes JN, Schieber MH. Orderly somatotopy in primary motor cortex: does it exist? NeuroImage. 2001;13:968–74.

    Article  CAS  PubMed  Google Scholar 

  23. Brown GT. J Physiol. 1914;xlviii:xxix, xxx, xxxiii.

    Google Scholar 

  24. Brown GT, Sherrington CS. On the instability of a cortical point. Proc R Soc London, Ser B. 1912;85:250–77.

    Article  Google Scholar 

  25. Krause F. Chirurgie des Gehirns und Rueckenmarks; 1911.

    Google Scholar 

  26. Vilensky JA, Gilman S. Horsley was the first to use electrical stimulation of the human cerebral cortex intraoperatively. Surg Neurol. 2002;58:425–6.

    Article  PubMed  Google Scholar 

  27. Pondal-Sordo M, Diosy D, Tellez-Zenteno JF, et al. Epilepsy surgery involving the sensory-motor cortex. Brain. 2006;129:3307–14.

    Article  PubMed  Google Scholar 

  28. Krause F, Schum H. Spezielle Chirurgie der Gehirnkrankheiten; 1931.

    Google Scholar 

  29. Foerster O, Penfield WP. The structural basis of traumatic epilepsy and results of radical operation. Brain. 1930;53:99–119.

    Article  Google Scholar 

  30. Foerster O, Altenburger H. Elektrobiologische Vorgänge an der menschlichen Hirnrinde. J Neurol. 1935;135:277–88.

    Article  Google Scholar 

  31. Luders HO, Comair YG. Epilepsy surgery. Philadelphia: Lippincott Williams and Wilkins; 2001.

    Google Scholar 

  32. Sarikcioglu L. Otfrid Foerster (1873-1941): one of the distinguished neuroscientists of his time. J Neurol Neurosurg Psychiatry. 2007;78:650.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Penfield WP, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389–443.

    Article  Google Scholar 

  34. Penfield WP, Rasmussen T. The cerebral cortex of man. New York: The Macmillan Company; 1957.

    Google Scholar 

  35. Feindel W. The physiologist and the neurosurgeon: the enduring influence of Charles Sherrington on the career of Wilder Penfield. Brain. 2007;130:2758–65.

    Article  PubMed  Google Scholar 

  36. Penfield WP, Roberts L. Speech and brain mechanisms. Princeton University Press: Princeton; 1959.

    Google Scholar 

  37. Catani M, Dell’acqua F, Vergani F, et al. Short frontal lobe connections of the human brain. Cortex. 2012;48:273–91.

    Article  PubMed  Google Scholar 

  38. Foerster O. Symptomatologie der Erkrankingen des Grosshirns: motorische Felder und Bahnen. In: Bumke O, Foerster O, editors. Handbuch der Neurologie. Berlin: Springer; 1936.

    Google Scholar 

  39. Luria AR. Higher cortical functions in man. 2nd ed. New York: Basic Books Inc.; 1980.

    Book  Google Scholar 

  40. Schmahmann JD, Pandya DN. Fiber pathways of the brain. New York: OUP; 2006.

    Book  Google Scholar 

  41. Sakamoto T, Porter LL, Asanuma H. Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning. Brain Res. 1987;413:360–4.

    Article  CAS  PubMed  Google Scholar 

  42. Ferezou I, Haiss F, Gentet LJ, et al. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron. 2007;56:907–23.

    Article  CAS  PubMed  Google Scholar 

  43. Schott GD. Penfield’s homunculus: a note on cerebral cartography. J Neurol Neurosurg Psychiatry. 1993;56:329–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Penfield WP. Ferrier lecture: some observations on the cerebral cortex of man. Proc R Soc London, Ser B. 1947;134:329–47.

    Article  CAS  Google Scholar 

  45. Sanes JN, Donoghue JP. Plasticity and primary motor cortex. Annu Rev Neurosci. 2000;23:393–415.

    Article  CAS  PubMed  Google Scholar 

  46. Vargas-Irwin CE. Motor cortical control of naturalistic reachting and grasping actions [thesis]. Brown University; 2010.

    Google Scholar 

  47. Snyder PJ, Whitaker HA. Neurologic heuristics and artistic whimsy: the cerebral cartography of Wilder Penfield. J Hist Neurosci. 2013;22(3):277–91.

    Article  PubMed  Google Scholar 

  48. Bartholow R. Experimental investigations into the functions of the human brain. Am J Med Sci. 1874;67:305–13.

    Article  Google Scholar 

  49. Harris LJ, Almerigi JB. Probing the human brain with stimulating electrodes: the story of Roberts Bartholow’s (1874) experiment on Mary Rafferty. Brain Cogn. 2009;70:92–115.

    Article  PubMed  Google Scholar 

  50. Kim OJ. Experiment at bedside: Harvey Cushing’s neurophysiological research. Korean J Med Hist. 2009;18(2):205–22.

    Google Scholar 

  51. Bliss M. Harvey Cushing: A life in surgery. New York: Oxford University Press; 2005.

    Google Scholar 

  52. Cushing H. The surgical aspects of major neuralgia of the trigeminal nerve. JAMA. 1905;44:860–5.

    Article  Google Scholar 

  53. Miller JT, Rahimi SY, Lee M. History of infection control and its contributions to the development and success of brain tumor operations. Neurosurg Focus. 2005;18:e4.

    Article  PubMed  Google Scholar 

  54. Clark FC. A brief history of antiseptic surgery. Med Library Hist J. 1907;5:145–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fodstad H, Kelly PJ, Buchfelder M. History of the Cushing reflex. Neurosurgery. 2006;59:1132–7; discussion 1137.

    Google Scholar 

  56. Jefferson G. Harvey Cushing, April 8, 1869-October 7, 1939. Surg Neurol. 1974;2:217–24.

    CAS  PubMed  Google Scholar 

  57. Powell M. Sir Victor Horsley—an inspiration. BMJ. 2006;333:1317–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cushing H. A note upon the faradic stimulation of the postcentral gyrus in conscious patients. Brain. 1909;32:44–53.

    Article  Google Scholar 

  59. Pendleton C, Zaidi HA, Chaichana KL, et al. Harvey Cushing’s contributions to motor mapping: 1902-1912. Cortex. 2012;48:7–14.

    Article  PubMed  Google Scholar 

  60. Horsley V. The Linacre lecture on the function of the so-called motor area of the brain. Br Med J. 1909;2:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tan TC, Black PM. The contributions of Otfrid Foerster (1873-1941) to neurology and neurosurgery. Neurosurgery. 2001;49:1231–6.

    CAS  PubMed  Google Scholar 

  62. Foerster O, Penfield WP. Der Narbenzug am und im Gehirn bei traumatischer Epilepsie in seiner Bedeutung für das Zustandekommen der Anfälle und für die therapeutische Bekämpfung derselben. Z ges Neurol Psychiat. 1930;125:475–572.

    Google Scholar 

  63. Preul MC, Feindel W. Origins of Wilder Penfield’s surgical technique: the role of the “Cushing ritual” and influences from the European experience. J Neurosurg. 1991;75:812–20.

    Article  CAS  PubMed  Google Scholar 

  64. Penfield WP. Diencephalic autonomic epilepsy. Res Publ Assoc Nerv Ment Dis. 1930;9:645–63.

    Google Scholar 

  65. Nielsen JM. The possibility of pure motor aphasia. Bull Los Angel Neurol Soc. 1936;1:11–4.

    Google Scholar 

  66. Penfield WP, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown and Company; 1954.

    Google Scholar 

  67. Penfield W, Welch K. The supplementary motor area of the cerebral cortex: a clinical and experimental study. Arch Neurol Psychiatr. 1951;66:289.

    Article  CAS  Google Scholar 

  68. Geschwind N. Selected papers on language and the brain. New York: Springer; 1974.

    Book  Google Scholar 

  69. Schwab O. Über vorübergehenden aphasische Störungen nach Rindenexzision aus dem linken Stirnhirn bei Epileptikern. Dtsch Z Nervenheilk. 1927;94:117–84.

    Google Scholar 

  70. Bogen JE, Bogen GM. Wernicke’s region—where is it? Ann N Y Acad Sci. 1976;280:834–43.

    Article  CAS  PubMed  Google Scholar 

  71. Prados M, Strowger B, Feindel W. Studies on cerebral edema: I. Reaction of the brain to air exposure; pathologic changes; II. Physiologic changes. Arch Neurol Psychiatry. 1945;54:163–74. 290

    Google Scholar 

  72. Crosson B. Subcortical functions in language and memory. New York: Guilford Press; 1992.

    Google Scholar 

  73. Ford AA, Triplett W, Sudhyadhom A, et al. Broca’s area and its striatal and thalamic connections: a diffusion-MRI tractography study. Front Neuroanat. 2013;7:1–12.

    Article  Google Scholar 

  74. Fedio P, Van Buren JM. Memory deficits during electrical stimulation of the speech cortex in conscious man. Brain Lang. 1974;1:29–42.

    Article  Google Scholar 

  75. Ojemann GA. Cortical organization of language. J Neurosci. 1991;11:2281–7.

    CAS  PubMed  Google Scholar 

  76. Lubrano V, Draper L, Roux FE. What makes surgical tumor resection feasible in Broca’s area? Insights into intraoperative brain mapping. Neurosurgery. 2010;66:868–75; discussion 875.

    Google Scholar 

  77. Thiel A, Herholz K, Koyuncu A, et al. Plasticity of language networks in patients with brain tumors: a positron emission tomography activation study. Ann Neurol. 2001;50:629.

    Article  Google Scholar 

  78. Stern Y. Cognitive reserve. Neuropsychologia. 2009;47:2015–28.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Prince M, Acosta D, Ferri CP, et al. Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: a 10/66 Dementia Research Group population-based cohort study. Lancet. 2012;380(9836):50–8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ojemann GA, Whitaker HA. Language localization and variability. Brain Lang. 1978;6:239–60.

    Article  CAS  PubMed  Google Scholar 

  81. Rutten GJ, van Rijen PC, van Veelen CW, Ramsey NF. Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcular electrostimulation in Broca’s area. Ann Neurol. 1999;46:405–8.

    Article  CAS  PubMed  Google Scholar 

  82. Tomaiuolo F, MacDonald JD, Caramanos Z, et al. Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis. Eur J Neurosci. 1999;11:3033–46.

    Google Scholar 

  83. Benzagmout M, Gatignol P, Duffau H. Resection of World Health Organization Grade II gliomas involving Broca’s area: methodological and functional considerations. Neurosurgery. 2007;61:741–52.

    Article  PubMed  Google Scholar 

  84. Ojemann GA, Ojemann JG, Lettich E, Berger MS. Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71:316–26.

    Article  CAS  PubMed  Google Scholar 

  85. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358:18–27.

    Article  CAS  PubMed  Google Scholar 

  86. Ojemann GA. Some brain mechanisms for reading. In: von Euler C, Lundberg I, Lennerstrand G, editors. Brain and reading. New York: MacMillan; 1989. p. 47–59.

    Chapter  Google Scholar 

  87. Roux FE, Lubrano V, Lauwers-Cances V, et al. Intra-operative mapping of cortical areas involved in reading in mono- and bilingual patients. Brain. 2004;127:1796–810.

    Article  PubMed  Google Scholar 

  88. Ojemann JG, Ojemann GA, Lettich E. Cortical stimulation mapping of language cortex by using a verb generation task: effects of learning and comparison to mapping based on object naming. J Neurosurg. 2002;97:33–8.

    Article  PubMed  Google Scholar 

  89. Lubrano V, Roux FE, Demonet JF. Writing-specific sites in frontal areas: a cortical stimulation study. J Neurosurg. 2004;101:787–98.

    Article  PubMed  Google Scholar 

  90. Hamberger MJ, Goodman RR, Perrine K, Tamny T. Anatomic dissociation of auditory and visual naming in the lateral temporal cortex. Neurology. 2001;56:56–61.

    Article  CAS  PubMed  Google Scholar 

  91. Ojemann G, Mateer C. Human language cortex: localization of memory, syntax, and sequential motor-phoneme identification systems. Science. 1979;205:1401–3.

    Article  CAS  PubMed  Google Scholar 

  92. Schaffler L, Luders HO, Dinner DS, et al. Comprehension deficits elicited by electrical stimulation of Broca’s area. Brain. 1993;116:695–715.

    Article  PubMed  Google Scholar 

  93. Rapport RL, Tan CT, Whitaker HA. Language function and dysfunction among Chinese- and English-speaking polyglots: cortical stimulation, Wada testing, and clinical studies. Brain Lang. 1983;18:342–66.

    Article  CAS  PubMed  Google Scholar 

  94. Roux FE, Tremoulet M. Organization of language areas in bilingual patients: a cortical stimulation study. J Neurosurg. 2002;97:857–64.

    Article  PubMed  Google Scholar 

  95. Lucas TH, McKhann GM, Ojemann GA. Functional separation of languages in the bilingual brain: a comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. J Neurosurg. 2004;101:449–57.

    Article  PubMed  Google Scholar 

  96. Boatman D. Cortical bases of speech perception: evidence from functional lesion studies. Cognition. 2004;92:47–65.

    Article  PubMed  Google Scholar 

  97. Ojemann GA. Organization of short-term verbal memory in language areas of human cortex: evidence from electrical stimulation. Brain Lang. 1978;5:331–40.

    Article  CAS  PubMed  Google Scholar 

  98. Ojemann GA. Models of the brain organization for higher integrative functions derived with electrical stimulation techniques. Hum Neurobiol. 1982;1:243–9.

    CAS  PubMed  Google Scholar 

  99. Fried I, Mateer C, Ojemann G, et al. Organization of visuospatial functions in human cortex. Evidence from electrical stimulation. Brain. 1982;105:349–71.

    Article  CAS  PubMed  Google Scholar 

  100. Kho KH, Rutten GJ, Leijten FS, et al. Working memory deficits after resection of the dorsolateral prefrontal cortex predicted by functional magnetic resonance imaging and electrocortical stimulation mapping. Case report. J Neurosurg. 2007;106:501–5.

    Article  PubMed  Google Scholar 

  101. Perrine K, Uysal S, Dogali M, et al. Functional mapping of memory and other nonlinguistic cognitive abilities in adults. Adv Neurol. 1993;63:165–77.

    CAS  PubMed  Google Scholar 

  102. Thiebaut de Schotten M, Urbanski M, Duffau H, et al. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science. 2005;309:2226–8.

    Google Scholar 

  103. Roux FE, Boetto S, Sacko O, et al. Writing, calculating, and finger recognition in the region of the angular region: a cortical stimulation study of Gerstmann syndrome. J Neurosurg. 2003;99:716–27.

    Article  PubMed  Google Scholar 

  104. Boatman D, Gordon B, Hart J, et al. Transcortical sensory aphasia: revisited and revised. Brain. 2000;123:1634–42.

    Article  PubMed  Google Scholar 

  105. Martin A. The representation of object concepts in the brain. Annu Rev Psychol. 2007;58:25–45.

    Article  PubMed  Google Scholar 

  106. Lambon Ralph MA. Neural basis of memory. Brain mapping. Wien: Springer; 2012. p. 145–54.

    Google Scholar 

  107. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.

    Article  CAS  PubMed  Google Scholar 

  108. Sanai N, Berger MS. Operative techniques for gliomas and the value of extent of resection. Neurotherapeutics. 2009;6:478–86.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Skirboll SS, Ojemann GA, Berger MS, et al. Functional cortex and subcortical white matter located within gliomas. Neurosurgery. 1996;38:678–84.

    Article  CAS  PubMed  Google Scholar 

  110. Duffau H. The “frontal syndrome” revisited: lessons from electrostimulation mapping studies. Cortex. 2012;48:120–31.

    Article  PubMed  Google Scholar 

  111. Mandonnet E, Delattre JY, Tanguy ML, et al. Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann Neurol. 2003;53:524–8.

    Article  PubMed  Google Scholar 

  112. Schomas DA, Laack NN, Rao RD, et al. Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo Clinic. Neuro-Oncology. 2009;11:437–45.

    Google Scholar 

  113. van den Bent MJ. Practice changing mature results of RTOG study 9802: another positive PCV trial makes adjuvant chemotherapy part of standard of care in low-grade glioma. Neuro-Oncology. 2014;16:1570–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Smith JS, Chang EF, Lamborn KR, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26:1338–45.

    Article  PubMed  Google Scholar 

  115. Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62:753–64.

    Article  PubMed  Google Scholar 

  116. Teunissen F, Verheul HB, Rutten GJ. Functionality of glioma-infiltrated precentral gyrus: experience from fourteen patients. J Neurosurg Sci. 2017;61(2):140–50.

    PubMed  Google Scholar 

  117. Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4:476–86.

    Article  PubMed  Google Scholar 

  118. Plaza M, Gatignol P, Leroy M, Duffau H. Speaking without Broca’s area after tumor resection. Neurocase. 2009;15:294–310.

    Article  PubMed  Google Scholar 

  119. Sarubbo S, Le Bars E, Moritz-Gasser S, Duffau H. Complete recovery after surgical resection of left Wernicke’s area in awake patient: a brain stimulation and functional MRI study. Neurosurg Rev. 2012;35:287–92; discussion 292.

    Google Scholar 

  120. Ungerleider LG, Haxby JV. ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol. 1994;4:157–65.

    Article  CAS  PubMed  Google Scholar 

  121. Duffau H, Thiebaut de Schotten M, Mandonnet E. White matter functional connectivity as an additional landmark for dominant temporal lobectomy. J Neurol Neurosurg Psychiatry. 2008;79:492–5.

    Article  CAS  PubMed  Google Scholar 

  122. Duffau H. The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography. Neuropsychologia. 2008;46:927–34.

    Article  PubMed  Google Scholar 

  123. Sarubbo S, De Benedictis A, Maldonado IL, et al. Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct. 2011;218(1):21–37.

    Article  PubMed  Google Scholar 

  124. Martino J, Brogna C, Robles SG, et al. Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex. 2010;46(5):691–9.

    Article  PubMed  Google Scholar 

  125. Duffau H. Brain mapping: from neural basis of cognition to surgical applications. Wien: Springer; 2011.

    Book  Google Scholar 

  126. Duffau H. Brain plasticity and tumors. Adv Tech Stand Neurosurg. 2008;33:3–33.

    Article  CAS  PubMed  Google Scholar 

  127. Sanai N, Polley MY, Berger MS. Insular glioma resection: assessment of patient morbidity, survival, and tumor progression. J Neurosurg. 2010;112:1–9.

    Article  PubMed  Google Scholar 

  128. Hebb AO, Yang T, Silbergeld DL. The sub-pial resection technique for intrinsic tumor surgery. Surg Neurol Int. 2011;2:180.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Dewarrat GM, Annoni JM, Fornari E, et al. Acute aphasia after right hemisphere stroke. J Neurol. 2009;256:1461–7.

    Article  PubMed  Google Scholar 

  130. Alexander MP, Fischette MR, Fischer RS. Crossed aphasias can be mirror image or anomalous. Case reports, review and hypothesis. Brain. 1989;112:953–73.

    Article  PubMed  Google Scholar 

  131. Zangwill OL. Speech and the minor hemisphere. Acta Neurol Psychiatr Belg. 1967;67:1013–20.

    CAS  PubMed  Google Scholar 

  132. Gloning I, Gloning K, Haub G, Quatember R. Comparison of verbal behavior in right-handed and non right-handed patients with anatomically verified lesion of one hemisphere. Cortex. 1969;5:43–52.

    Article  PubMed  Google Scholar 

  133. Pedersen PM, Jorgensen HS, Nakayama H, et al. Aphasia in acute stroke: incidence, determinants, and recovery. Ann Neurol. 1995;38:659–66.

    Article  CAS  PubMed  Google Scholar 

  134. Wade DT, Hewer RL, David RM, Enderby PM. Aphasia after stroke: natural history and associated deficits. J Neurol Neurosurg Psychiatry. 1986;49:11–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ross ED. Affective prosody and the aprosodias. In: Mesulam MM, editor. Principles of behavioral and cognitive neurology. 2nd ed. New York: Oxford University Press; 2000. p. 316–31.

    Google Scholar 

  136. Gazzaniga MS, Sperry RW. Language after section of the cerebral commissures. Brain. 1967;90:131–48.

    Article  CAS  PubMed  Google Scholar 

  137. Wada J. A new method for the determination of the side of cerebral speech dominance: a preliminary report on the intracarotid injection of sodium amytal in man. Igaku Seibutsugaku. 1949;14:221–2.

    Google Scholar 

  138. Loring DW, Meador KJ, Lee GP, King DW. Amobarbital effects and lateralized brain function: the Wada test. New York: Springer; 2012.

    Google Scholar 

  139. Hart Jr J, Lesser RP, Fisher RS, et al. Dominant-side intracarotid amobarbital spares comprehension of word meaning. Arch Neurol. 1991;48:55–8.

    Article  PubMed  Google Scholar 

  140. de Paola L, Mader MJ, Germiniani FM, et al. Bizarre behavior during intracarotid sodium amytal testing (Wada test): are they predictable? Arq Neuropsiquiatr. 2004;62:444–8.

    Article  PubMed  Google Scholar 

  141. Yetkin FZ, Swanson S, Fischer M, et al. Functional MR of frontal lobe activation: comparison with Wada language results. Am J Neuroradiol. 1998;19:1095–8.

    CAS  PubMed  Google Scholar 

  142. Rasmussen T, Milner B. The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann N Y Acad Sci. 1977;299:355–69.

    Article  CAS  PubMed  Google Scholar 

  143. Risse GL, Gates JR, Fangman MC. A reconsideration of bilateral language representation based on the intracarotid amobarbital procedure. Brain Cogn. 1997;33:118–32.

    Article  CAS  PubMed  Google Scholar 

  144. Kurthen M, Helmstaedter C, Linke DB, et al. Quantitative and qualitative evaluation of patterns of cerebral language dominance. An amobarbital study. Brain Lang. 1994;46:536–64.

    Article  CAS  PubMed  Google Scholar 

  145. Rutten GJ, Ramsey NF, van Rijen PC, et al. fMRI-determined language lateralization in patients with unilateral or bilateral language dominance according to the Wada test. NeuroImage. 2002;17:447–60.

    Article  CAS  PubMed  Google Scholar 

  146. Wyllie E, Luders H, Murphy D, et al. Intracarotid amobarbital (Wada) test for language dominance: correlation with results of cortical stimulation. Epilepsia. 1990;31:156–61.

    Article  CAS  PubMed  Google Scholar 

  147. Kho KH, Leijten FS, Rutten GJ, et al. Discrepant findings for Wada test and functional magnetic resonance imaging with regard to language function: use of electrocortical stimulation mapping to confirm results. Case report. J Neurosurg. 2005;102:169–73.

    Article  PubMed  Google Scholar 

  148. Duffau H, Lopes M, Arthuis F, et al. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985-96) and with (1996-2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry. 2005;76:845–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Haglund MM, Berger MS, Shamseldin M, et al. Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery. 1994;34:567–76.

    Article  CAS  PubMed  Google Scholar 

  150. Borchers S, Himmelbach M, Logothetis N, Karnath HO. Direct electrical stimulation of human cortex—the gold standard for mapping brain functions? Nat Rev Neurosci. 2012;13:63–70.

    CAS  Google Scholar 

  151. Rutten GJ, Ramsey NF. The role of functional magnetic resonance imaging in brain surgery. Neurosurg Focus. 2010;28:E4.

    Article  PubMed  Google Scholar 

  152. Duffau H, Lopes M, Denvil D, Capelle L. Delayed onset of the supplementary motor area syndrome after surgical resection of the mesial frontal lobe: a time course study using intraoperative mapping in an awake patient. Stereotact Funct Neurosurg. 2001;76:74–82.

    Article  CAS  PubMed  Google Scholar 

  153. Krainik A, Duffau H, Capelle L, et al. Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology. 2004;62:1323–32.

    Article  CAS  PubMed  Google Scholar 

  154. Luders H, Lesser RP, Hahn J, et al. Basal temporal language area. Brain. 1991;114:743–54.

    Article  PubMed  Google Scholar 

  155. Ishitobi M, Nakasato N, Suzuki K, et al. Remote discharges in the posterior language area during basal temporal stimulation. Neuroreport. 2000;11:2997–3000.

    Article  CAS  PubMed  Google Scholar 

  156. Orwell G. Animal farm. 1st World Library—Literary Society; 2005.

    Google Scholar 

  157. Nathan SS, Sinha SR, Gordon B, et al. Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr Clin Neurophysiol. 1993;86:183–92.

    Article  CAS  PubMed  Google Scholar 

  158. Mandonnet E, Winkler PA, Duffau H. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir. 2010;152(2):185–93.

    Article  PubMed  Google Scholar 

  159. Boisgueheneuc G, Levy R, Volle E, et al. Functions of the left superior frontal gyrus in humans: a lesion study. Brain. 2007;129:3315–28.

    Article  Google Scholar 

  160. Luders H, Lesser RP, Dinner DS, et al. Localization of cortical function: new information from extraoperative monitoring of patients with epilepsy [published erratum appears in Epilepsia 1988 Nov-Dec;29(6):828]. Epilepsia. 1988;29(Suppl 2):S56–65.

    Article  PubMed  Google Scholar 

  161. Duffau H, Moritz-Gasser S, Mandonnet E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 2013.

    Google Scholar 

  162. Luciani L, Tamburini A. Ricerche sperimentali sui centri psico-motori corticali; 1878.

    Google Scholar 

  163. Mills CK. Cerebral localization in its practical relations; 1888.

    Google Scholar 

  164. Krause F, Heymann E. Chirurgische Operationslehre des Kopfes. 1912;2.

    Google Scholar 

  165. Catani M, Stuss DT. At the forefront of clinical neuroscience. Cortex. 2012;48:1–6.

    Article  PubMed  Google Scholar 

  166. Rahm Jr WE, Scarff JE. Electrical stimulation of the cerebral cortex: description of a new stimulator. Arch Neurol Psychiatr. 1943;50:183–9.

    Article  Google Scholar 

  167. Gill AS, Binder DK. Wilder Penfield, Pio del Rio-Hortega, and the discovery of oligodendroglia. Neurosurgery. 2007;60:940–8; discussion 940.

    Google Scholar 

  168. Penfield W. Cytology and cellular pathology of the nervous system. New York: Paul B Hoeber; 1932.

    Google Scholar 

  169. Sherman SM, Guillery RW. Functional connections of cortical areas: a new view from the thalamus. booksgooglecom; 2013.

    Google Scholar 

  170. Jelgersma G. Atlas anatomicum cerebri humani: 168 sections of the human brain. Amsterdam: Scheltema & Holkema; 1931.

    Google Scholar 

  171. Alexander M, Naeser M, Palumbo C. Correlations of subcortical CT lesion sites and aphasia profiles. Brain. 1987;110:961–88.

    Article  PubMed  Google Scholar 

  172. Murdoch BE. Speech and language disorders associated with subcortical pathology. Hoboken: Wiley; 2009.

    Google Scholar 

  173. Bates E. Plasticity, localization, and language development. The changing nervous system. Neurobehavioral consequences of early brain disorders. New York: Oxford University Press; 1999. p. 214–53.

    Google Scholar 

  174. Boatman DF, Miglioretti DL. Cortical sites critical for speech discrimination in normal and impaired listeners. J Neurosci. 2005;25:5475–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rutten, GJ. (2017). Mapping and Lesioning the Living Brain. In: The Broca-Wernicke Doctrine. Springer, Cham. https://doi.org/10.1007/978-3-319-54633-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54633-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54632-2

  • Online ISBN: 978-3-319-54633-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics