Skip to main content

Fully Homomorphic Encryption for Point Numbers

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10143))

Included in the following conference series:

Abstract

Based on the FV scheme, we construct at first fully homomorphic encryption scheme \(\mathsf {FX}\) that can homomorphically compute addition and multiplication of encrypted fixed point numbers without knowing the secret key. Then, we show that in the \(\mathsf {FX}\) scheme one can efficiently and homomorphically compare magnitude of two encrypted numbers. That is, one can compute an encryption of the greater-than bit that indicates \(x > x'\) or not, given two ciphertexts c and \(c'\) of x and \(x'\), respectively, without knowing the secret key. Finally we show that these properties of the \(\mathsf {FX}\) scheme enables us to construct a fully homomorphic encryption scheme \(\mathsf {FL}\) that can homomorphically compute addition and multiplication of encrypted floating point numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45239-0_4

    Chapter  Google Scholar 

  2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM (2012)

    Google Scholar 

  4. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_20

    Chapter  Google Scholar 

  5. Chung, H.W., Kim, M.: Encoding rational numbers for FHE-based applications. IACR Cryptology ePrint Archive (2016/344)

    Google Scholar 

  6. Cheon, J.H., Kim, M., Lauter, K.: Homomorphic computation of edit distance. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 194–212. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48051-9_15

    Chapter  Google Scholar 

  7. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed-point arithmetic in SHE schemes. IACR Cryptology ePrint Archive (2016/250)

    Google Scholar 

  8. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive (2012/144)

    Google Scholar 

  9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)

    Google Scholar 

  10. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 1–16. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8_1

    Chapter  Google Scholar 

  11. Golle, P.: A private stable matching algorithm. In: Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 65–80. Springer, Heidelberg (2006). doi:10.1007/11889663_5

    Chapter  Google Scholar 

  12. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 1–21. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37682-5_1

    Chapter  Google Scholar 

  13. Ishimaki, Y., Shimizu, K., Nuida, K., Yamana, H.: Faster privacy-preserving search for genome sequences using fully homomorphic encryption. In: SCIS 2016, Japan (2016)

    Google Scholar 

  14. Lu, W-J., Kawasaki, S., Sakuma, J.: Cryptographically-secure outsourcing of statistical data analysis I: descriptive statistics. In: CSS 2015, Japan (2015)

    Google Scholar 

  15. Lauter, K., López-Alt, A., Naehrig, M.: Private computation on encrypted genomic data. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 3–27. Springer, Cham (2015). doi:10.1007/978-3-319-16295-9_1

    Google Scholar 

  16. Liu, J., Li, J., Xu, S., Fung, B.C.M.: Secure outsourced frequent pattern mining by fully homomorphic encryption. In: Madria, S., Hara, T. (eds.) DaWaK 2015. LNCS, vol. 9263, pp. 70–81. Springer, Cham (2015). doi:10.1007/978-3-319-22729-0_6

    Chapter  Google Scholar 

  17. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). doi:10.1007/978-3-319-06734-6_20

    Chapter  Google Scholar 

  18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  19. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 1–20. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_1

    Chapter  Google Scholar 

  20. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Crypt. 71(1), 57–81 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by CREST, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiko Arita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Arita, S., Nakasato, S. (2017). Fully Homomorphic Encryption for Point Numbers. In: Chen, K., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2016. Lecture Notes in Computer Science(), vol 10143. Springer, Cham. https://doi.org/10.1007/978-3-319-54705-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54705-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54704-6

  • Online ISBN: 978-3-319-54705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics