Skip to main content

Warp Drive Basics

  • Chapter
  • First Online:
Wormholes, Warp Drives and Energy Conditions

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 189))

Abstract

“Warp drive” spacetimes and wormhole geometries are useful as “gedanken-experiments” that force us to confront the foundations of general relativity, and among other issues, to precisely formulate the notion of “superluminal” travel and communication. Here, we will consider the basic definition and properties of warp drive spacetimes. In particular, we will discuss the violation of the energy conditions associated with these spacetimes, as well as some other interesting properties such as the appearance of horizons for the superluminal case, and the possibility of using a warp drive to create closed timelike curves. Furthermore, due to the horizon problem, an observer in a spaceship cannot create nor control on demand a warp bubble. To contour this difficulty, we discuss a metric introduced by Krasnikov, which also possesses the interesting property in that the time for a round trip, as measured by clocks at the starting point, can be made arbitrarily short.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is also interesting to note that the inclusion of a generic lapse function \(\alpha (x,y,z,t)\), in the metric , decreases the negative energy density , which is now given by

    figure a

    One may impose that \(\alpha \) may be taken as unity in the exterior and interior of the warp bubble, so that proper time equals coordinate time. In order to significantly decrease the negative energy density in the bubble walls, one may impose an extremely large value for the lapse function. However, the inclusion of the lapse function suffers from an extremely severe drawback, as proper time as measured in the bubble walls becomes absurdly large, \(d\tau =\alpha \,dt\), for \(\alpha \gg 1\).

  2. 2.

    We refer the reader to [25, 26] for details.

  3. 3.

    Due to these results, one may tentatively conclude that the existence of these spacetimes is improbable. But, there are a series of considerations that can be applied to the QI. First, the QI is only of interest if one is relying on quantum field theory to provide the exotic matter to support the Alcubierre warp bubble. However, there are classical systems (non-minimally coupled scalar fields ) that violate the null and the weak energy conditions , whilst presenting plausible results when applying the QI (See Chap. 10). Second, even if one relies on quantum field theory to provide exotic matter , the QI does not rule out the existence of warp drive spacetimes, although they do place serious constraints on the geometry.

  4. 4.

    See Ref. [22] for more details.

References

  1. Morris MS, Thorne KS. Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am J Phys. 1988;56:395.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Visser M. Lorentzian Wormholes: From Einstein to Hawking. New York: American Institute of Physics; 1995.

    Google Scholar 

  3. Alcubierre M. The warp drive: hyper-fast travel within general relativity. Class Quant Grav. 1994;11:L73–7.

    Article  ADS  MathSciNet  Google Scholar 

  4. Visser M, Bassett B, Liberati S. Perturbative superluminal censorship and the null energy condition. In: Proceedings of the eigth canadian conference on general relativity and relativistic astrophysics. AIP Press; 1999.

    Google Scholar 

  5. Visser M, Bassett B, Liberati S. Superluminal censorship. Nucl Phys Proc Suppl. 2000;88:267–70.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Olum K. Superluminal travel requires negative energy density. Phys Rev Lett. 1998;81:3567–70.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Barcelo C, Visser M. Twilight for the energy conditions? Int J Mod Phys D. 2002;11:1553.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Barcelo C, Visser M. Scalar fields, energy conditions, and traversable wormholes. Class Quant Grav. 2000;17:3843.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Barcelo C, Visser M. Traversable wormholes from massless conformally coupled scalar fields. Phys Lett B. 1999;466:127.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Riess AG, et al. Type Ia Supernova discoveries at \(z>1\) from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys J. 2004;607:665–87.

    Article  ADS  Google Scholar 

  11. Visser M. Jerk, snap, and the cosmological equation of state. Class Quant Grav. 2004;21:2603.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Caldwell RR, Kamionkowski M, Weinberg NN. Phantom energy and cosmic doomsday. Phys Rev Lett. 2003;91:071301.

    Article  ADS  Google Scholar 

  13. Krasnikov SV. Hyper-fast interstellar travel in general relativity. Phys Rev D. 1998;57:4760 [arXiv:grspsqcsps9511068].

    Article  ADS  MathSciNet  Google Scholar 

  14. Everett AE, Roman TA. A superluminal subway: the krasnikov tube. Phys Rev D. 1997;56:2100.

    Article  ADS  MathSciNet  Google Scholar 

  15. Natário J. Warp drive with zero expansion. Class Quant Grav. 2002;19:1157.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Ford LH, Roman TA. Averaged energy conditions and quantum inequalities. Phys Rev D. 1995;51:4277.

    Article  ADS  MathSciNet  Google Scholar 

  17. Ford LH, Roman TA. Quantum field theory constrains traversable wormhole geometries. Phys Rev D. 1996;53:5496.

    Article  ADS  MathSciNet  Google Scholar 

  18. Pfenning MJ, Ford LH. The unphysical nature of warp drive. Class Quant Grav. 1997;14:1743.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Van Den Broeck C. A Warp drive with reasonable total energy requirements. Class Quant Grav. 1999;16:3973.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gravel P, Plante J. Simple and double walled Krasnikov tubes: I Tubes with low masses. Class Quant Grav. 2004;21:L7.

    Article  ADS  MATH  Google Scholar 

  21. Gravel P. Simple and double walled Krasnikov tubes: II. Primordial microtubes and homogenization. Class Quant Grav. 2004;21:767.

    Article  ADS  MATH  Google Scholar 

  22. Lobo FSN, Visser M. Fundamental limitations on ‘warp drive’ spacetimes. Class Quant Grav. 2004;21:5871.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. York JW. Kinematic and dynamics of general relativity. In: Smarr LL, editor. Sources of gravitational radiation. UK: Cambridge University Press; 1979. p. 83–126.

    Google Scholar 

  24. Alcubierre M. Introduction to 3+1 numerical relativity. UK: Oxford University Press; 2008.

    Book  MATH  Google Scholar 

  25. Visser M, Kar S, Dadhich N. Traversable wormholes with arbitrarily small energy condition violations. Phys. Rev. Lett. 2003;90:201102.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kar S, Dadhich N, Visser M. Quantifying energy condition violations in traversable wormholes. Pramana. 2004;63:859–64.

    Article  ADS  Google Scholar 

  27. Hiscock WA. Quantum effects in the Alcubierre warp drive spacetime. Class Quant Grav. 1997;14:L183.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Clark C, Hiscock WA, Larson SL. Null geodesics in the Alcubierre warp drive spacetime: the view from the bridge. Class Quant Grav. 1999;16:3965.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. González-Díaz PF. On the warp drive space-time. Phys Rev D. 2000;62:044005.

    Article  ADS  MathSciNet  Google Scholar 

  30. Everett AE. Warp drive and causality. Phys Rev D. 1996;53:7365.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

FSNL acknowledges financial support of the Fundação para a Ciência e Tecnologia through an Investigador FCT Research contract, with reference IF/00859/2012, funded by FCT/MCTES (Portugal). MA also acknowledges support from UNAM through PAPIIT-IN103514 grant, and from CONACYT through infrastructure grant 253709.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Alcubierre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alcubierre, M., Lobo, F.S.N. (2017). Warp Drive Basics. In: Lobo, F. (eds) Wormholes, Warp Drives and Energy Conditions. Fundamental Theories of Physics, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-319-55182-1_11

Download citation

Publish with us

Policies and ethics