Skip to main content

Debris Flow Susceptibility Assessment Using Airborne Laser Scanning Data

  • Chapter
  • First Online:
Laser Scanning Applications in Landslide Assessment

Abstract

Debris flows and related landslide failure phenomena occur in many mountainous areas worldwide and pose significant hazards to settlements, human lives, and transportation corridors. Debris flows occur on different terrains where sufficient debris materials are available and the angle of slope is steep enough. Flow behavior is of different types, namely, confined, unconfined, and transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armanini, A., & Scotton, P. (1992). Experimental analysis on the dynamic impact of a debris flow on structures. Internationales symposion interpraevent, 6, 107–116.

    Google Scholar 

  • Bartelt, P., Bühler, Y., Buser, O., Christen, M., & Meier, L. (2012). Modeling mass‐dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches. Journal of Geophysical Research: Earth Surface, 117(F1).

    Google Scholar 

  • Bathurst, J. C., Burton, A., & Ward, T. J. (1997). Debris flow run-out and landslide sediment delivery model tests. Journal of Hydraulic Engineering, 123(5), 410–419.

    Google Scholar 

  • Baumann, V., Wick, E., Horton, P., & Jaboyedoff, M. (2011, October). Debris flow susceptibility mapping at a regional scale along the National Road N7, Argentina. In Proceedings of the 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (pp. 2–6).

    Google Scholar 

  • Berger, C., McArdell, B. W., & Schlunegger, F. (2011). Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. Journal of Geophysical Research: Earth Surface, 116(F1).

    Google Scholar 

  • Berger, C., McArdell, B., & Lauber, G. (2012). Murgangmodellierung im Illgraben, Schweiz. mit dem numerischen 2D-Modell RAMMS. Murgangmodellierung in der Praxis. In 12th Congress Interpraevent.

    Google Scholar 

  • Blahut, J., Horton, P., Sterlacchini, S., & Jaboyedoff, M. (2010). Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy. Natural Hazards and Earth System Sciences, 10(11), 2379–2390.

    Article  Google Scholar 

  • Carrara, A., Cardinali, M., Guzzetti, F., & Reichenbach, P. (1995). GIS technology in mapping landslide hazard. In Geographical information systems in assessing natural hazards (pp. 135–175). Netherlands: Springer.

    Google Scholar 

  • Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., et al. (2012). Integral hazard management using a unified software environment. In 12th Congress Interpraevent (pp. 77-86).

    Google Scholar 

  • Christen, M., Kowalski, J., & Bartelt, P. (2010). RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1), 1–14.

    Article  Google Scholar 

  • Chung, C. J. F., & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65(12), 1389–1399.

    Google Scholar 

  • Dai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213–228.

    Article  Google Scholar 

  • Deubelbeiss, Y., & Graf, C. (2013). Two different starting conditions in numerical debris flow models–Case study at Dorfbach, Randa (Valais, Switzerland). GRAF, C.(Red.) Mattertal–ein Tal in Bewegung. Publikation zur Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, 29, 125–138.

    Google Scholar 

  • Egli, T. (2005). Wegleitung Objektschutz gegen gravitative Naturgefahren. VKF.

    Google Scholar 

  • Fannin, R. J., & Wise, M. P. (2001). An empirical-statistical model for debris flow travel distance. Canadian Geotechnical Journal, 38(5), 982–994.

    Article  Google Scholar 

  • Fischer, L., Rubensdotter, L., Sletten, K., Stalsberg, K., Melchiorre, C., Horton, P., et al. (2012, June). Debris flow modeling for susceptibility mapping at regional to national scale in Norway. In Proceedings of the 11th International and 2nd North American Symposium on Landslides (pp. 3–8).

    Google Scholar 

  • Frattini, P., Crosta, G., & Carrara, A. (2010). Techniques for evaluating the performance of landslide susceptibility models. Engineering Geology, 111(1), 62–72.

    Article  Google Scholar 

  • Glade, T. (2005). Linking debris-flow hazard assessments with geomorphology. Geomorphology, 66(1), 189–213.

    Article  Google Scholar 

  • Graf, C., & McArdell, B. W. (2009, September). Debris-flow monitoring and debris-flow runout modelling before and after construction of mitigation measures: an example from an instable zone in the Southern Swiss Alps. In La géomorphologie alpine: entre patrimoine et contrainte. Actes du colloque de la Société Suisse de Géomorphologie (pp. 3–5).

    Google Scholar 

  • Guinau, M., Vilajosana, I., & Vilaplana, J. M. (2007). GIS-based debris flow source and runout susceptibility assessment from DEM data? A case study in NW Nicaragua. Natural Hazards and Earth System Science, 7(6), 703–716.

    Article  Google Scholar 

  • Haeberli, W. (1983). Frequency and characteristics of glacier floods in the Swiss Alps. Annals of Geophysics, 4: 85–90.

    Google Scholar 

  • Hofmeister, R. J., & Miller, D. J. (2003). GIS-based modeling of debris-flow initiation, transport and deposition zones for regional hazard assessments in western Oregon, USA. In Debris-flow hazards mitigation: Mechanics, prediction, and assessment (pp. 1141–1149). Rotterdam: Millpress.

    Google Scholar 

  • Holmgren, P. (1994). Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological processes, 8(4), 327–334.

    Google Scholar 

  • Horton, P., Jaboyedoff, M., Bardou, E., Locat, J., Perret, D., Turmel, D., et al. (2008). Debris flow susceptibility mapping at a regional scale.

    Google Scholar 

  • Horton, P., Jaboyedoff, M., Rudaz, B. E. A., & Zimmermann, M. (2013). Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazards and Earth System Sciences, 13(4), 869.

    Google Scholar 

  • Horton, P., Jaboyedoff, M., Zimmermann, M., Mazotti, B., & Longchamp, C. (2011). Flow-R, a model for debris flow susceptibility mapping at a regional scale–some case studies. Italian Journal of Engineering Geology, 2, 875–884.

    Google Scholar 

  • Hu, K., Wei, F., & Li, Y. (2011). Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China. Earth Surface Processes and Landforms, 36(9), 1268–1278.

    Article  Google Scholar 

  • Huggel, C., Kääb, A., Haeberli, W., & Krummenacher, B. (2003). Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Natural Hazards and Earth System Science, 3(6), 647–662.

    Google Scholar 

  • Hübl, J., & Holzinger, G. (2003). Entwicklung von Grundlagen zur Dimensionierung kronenoffener Bauwerke für die Geschiebebewirtschaftung in Wildbächen: Kleinmaßstäbliche Modellversuche zur Wirkung von Murbrechern. WLS Report, 50.

    Google Scholar 

  • Hübl, J., Suda, J., Proske, D., Kaitna, R., & Scheidl, C. (2009, September). Debris flow impact estimation. In Eleventh International Symposium on Water Management and Hydraulic Engineering (Vol. 1, pp. 137–148).

    Google Scholar 

  • Hürlimann, M., Copons, R., & Altimir, J. (2006). Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach. Geomorphology, 78(3), 359–372.

    Article  Google Scholar 

  • Iovine, G., Di Gregorio, S., & Lupiano, V. (2003). Debris-flow susceptibility assessment through cellular automata modeling: an example from 15? 16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy). Natural Hazards and Earth System Science, 3(5), 457–468.

    Google Scholar 

  • Ishikawa, N., Inoue, R., Hayashi, K., Hasegawa, Y., & Mizuyama, T. (2008). Experimental approach on measurement of impulsive fluid force using debris flow model.

    Google Scholar 

  • Iverson, R. M., & Denlinger, R. P. (2001). Mechanics of debris flows and debris-laden flash floods. In Seventh Federal Interagency Sedimentation Conference (pp. IV-1–IV-8).

    Google Scholar 

  • Iverson, R. M., Reid, M. E., Logan, M., LaHusen, R. G., Godt, J. W., & Griswold, J. P. (2011). Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience, 4(2), 116–121.

    Article  CAS  Google Scholar 

  • Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A., Metzger, R., et al. (2012). Use of LIDAR in landslide investigations: A review. Natural Hazards, 61(1), 5–28.

    Article  Google Scholar 

  • Jaedicke, C., Lied, K., & Kronholm, K. (2009). Integrated database for rapid mass movements in Norway. Natural Hazards and Earth System Sciences, 9(2), 469–479.

    Article  Google Scholar 

  • Jaedicke, C., Solheim, A., Blikra, L. H., Stalsberg, K., Sorteberg, A., Aaheim, A., et al. (2008). Spatial and temporal variations of Norwegian geohazards in a changing climate, the GeoExtreme Project. Natural Hazards and Earth System Sciences, 8(4), 893–904.

    Article  Google Scholar 

  • Jakob, M. (2005). Debris-flow hazard analysis. In Debris-flow hazards and related phenomena (pp. 411–443). Berlin: Springer.

    Google Scholar 

  • Jakob, M., Stein, D., & Ulmi, M. (2012). Vulnerability of buildings to debris flow impact. Natural Hazards, 60(2), 241–261.

    Google Scholar 

  • Kappes, M. S., Malet, J. P., Remaître, A., Horton, P., Jaboyedoff, M., & Bell, R. (2011). Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Natural Hazards and Earth System Sciences, 11(2), 627–641.

    Article  Google Scholar 

  • König, U. (2006). Real scale debris flow tests in the Schesatobel-valley (Doctoral dissertation. Master’s thesis, University of Natural Resources and Life Sciences, Vienna, Austria).

    Google Scholar 

  • Lari, S., Crosta, G. B., Frattini, P., Horton, P., & Jaboyedoff, M. (2011, June). Regional-scale debris-flow risk assessment for an alpine valley. In Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Padua, Italy (pp. 14–17).

    Google Scholar 

  • Lari, S., Frattini, P., Crosta, G. B., Jaboyedoff, M., & Horton, P. (2010). Rockfall and debris flow societal and economic risk assessment at the regional scale. In Acts 10th World Water Day, Accademia Nazionale dei Lincei, Rome, 22 (pp. 179–187).

    Google Scholar 

  • Lorente, A., Beguería, S., Bathurst, J. C., & García-Ruiz, J. M. (2007). Debris flow characteristics and relationships in the Central Spanish Pyrenees.

    Google Scholar 

  • Melelli, L., & Taramelli, A. (2004). An example of debris-flows hazard modeling using GIS. Natural Hazards and Earth System Science, 4(3), 347–358.

    Article  Google Scholar 

  • Monney, J., Herzog, B., Wenger, M., Wendeler, C., & Roth, A. (2007). Einsatz von multiplen Stahlnetzbarrieren als Murgangruckhalt. Wasser Energie Luft, 3, 255–259.

    Google Scholar 

  • Naef, D., Rickenmann, D., Rutschmann, P., & McArdell, B. W. (2006). Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Natural Hazards and Earth System Science, 6(1), 155–165.

    Article  Google Scholar 

  • Pradhan, B., & Lee, S. (2010). Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling and Software, 25(6), 747–759.

    Article  Google Scholar 

  • Proske, D., Kaitna, R., Suda, J., & Hübl, J. (2008). Abschätzung einer Anprallkraft für murenexponierte Massivbauwerke. Bautechnik, 85(12), 803–811.

    Article  Google Scholar 

  • Rickenmann, D., Laigle, D. M. B. W., McArdell, B. W., & Hübl, J. (2006). Comparison of 2D debris-flow simulation models with field events. Computational Geosciences, 10(2), 241–264.

    Article  Google Scholar 

  • Rickenmann, D., & Zimmermann, M. (1993). The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology, 8(2-3), 175–189.

    Google Scholar 

  • Sassa, K. (1989). Special lecture: Geotechnical model for the motion of landslides. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 26(2), 88.

    Google Scholar 

  • Scheidl, C., Rickenmann, D., & McArdell, B. W. (2013). Runout prediction of debris flows and similar mass movements. In Landslide science and practice (pp. 221–229). Berlin: Springer.

    Google Scholar 

  • Scheuner T., Schwab S., & McArdell B. (2011). Application of a two-dimensional numerical model in risk and hazard assessment in Switzerland. In 5th DFHM, Padua, Italy.

    Google Scholar 

  • Schürch, P., Densmore, A. L., Rosser, N. J., & McArdell, B. W. (2011). Dynamic controls on erosion and deposition on debris-flow fans. Geology, 39(9), 827–830.

    Article  Google Scholar 

  • Van Westen, C. J., Van Asch, T. W., & Soeters, R. (2006). Landslide hazard and risk zonation—Why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167–184.

    Article  Google Scholar 

  • Wendeler, C. S. I. (2008). Murgangrückhalt in Wildbächen: Grundlagen zu Planung und Berechnung von flexiblen Barrieren.

    Google Scholar 

  • Wendeler, C., Volkwein, A., Roth, A., Denk, M., & Wartmann, S. (2007). Field measurements and numerical modelling of flexible debris flow barriers. In Debris-flow hazards mitigation: Mechanics, prediction, and assessment (pp. 681–687). Rotterdam: Millpress.

    Google Scholar 

  • Zhang, S. (1993). A comprehensive approach to the observation and prevention of debris flows in China. Natural Hazards, 7(1), 1–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pradhan, B., Kalantar, B., Abdulwahid, W.M., Dieu, B.T. (2017). Debris Flow Susceptibility Assessment Using Airborne Laser Scanning Data. In: Pradhan, B. (eds) Laser Scanning Applications in Landslide Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-55342-9_14

Download citation

Publish with us

Policies and ethics