Skip to main content

General Physical and Chemical Models of the Earth’s Lower Mantle

  • Chapter
  • First Online:
The Earth's Lower Mantle

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 1309 Accesses

Abstract

The most popular model of the lower mantle is the Preliminary Reference Earth Model (PREM) , derived from seismic observations assuming the pyrolitic composition of the lower mantle. The uppermost part of the lower mantle (~660–770 km deep) has a steep velocity gradient, reflecting the mineral structure transformation from ringwoodite to bridgmanite and ferropericlase , after which gradual increase in both the compressional velocity (V p ) and shear velocity (V s ) reflects the near adiabatic compression of mineral phases. The adiabatic geothermal gradient within the upper mantle decreases with increasing depth without phase transitions. Subducting lithospheric slabs may significantly cool temperature profiles, particularly in the upper part of the lower mantle. However, results of experiments on the density of natural peridotite, performed within the range of entire lower-mantle pressures along the geotherm , demonstrated their significant mismatch with the PREM density model. This implies that the upper and the lower mantle must have different chemical compositions, i.e. the mantle is chemically stratified, with the inference of a non-pyrolitic composition of the lower mantle. The diapason of oxygen fugacity within the entire sequence of lower-mantle region may reach ten logarithmic units, varying from below the IW buffer to the FMQ buffer values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, D. L. (1983). Chemical composition of the Mantle. Journal of Geophysical Research, 88, B41–B52. doi:10.1029/Jb088is01p00b41

  • Anderson, D. L. (1989). Theory of the Earth. Oxford: Blackwell.

    Google Scholar 

  • Andrault, D., Bolfan-Casanova, N., Nigro, G. L., Bouhifd, M. A., Garbarino, G., & Mezouar, M. (2011). Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history. Earth and planetary science letters, 304(1), 251–259.

    Google Scholar 

  • Badro, J., Fiquet, G., Guyot, F., Rueff, J. P., Struzhkin, V. V., Vankó, G., et al. (2003). Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science, 300(5620), 789–791.

    Google Scholar 

  • Bass, J. D., & Anderson, D. L. (1984). Composition of the upper mantle: Geophysical tests of two petrological models. Geophysical Research Letters, 11, 229–232.

    Google Scholar 

  • Berry, A. J., Yaxley, G. M., Hanger, B. J., Woodland, A. B., De Jonge, M. D., Howard, D. L., et al. (2013). Quantitative mapping of the oxidative effects of mantle metasomatism. Geology, 41, 683–686.

    Google Scholar 

  • Brown, J. M., & Shankland, T. J. (1981). Thermodynamic parameters in the Earth as determined from seismic profiles. Geophysical Journal of the Royal Astronomical Society, 66, 579–596.

    Google Scholar 

  • Bullen, K. E. (1942). The density variation of the Earth’s central core. Bulletin of the Seismological Society of America, 30, 235–250.

    Google Scholar 

  • Bullen, K. E. (1950). An Earth model based on compressibility-pressure hypothesis. Monthly Notices of the Royal Astronomical Society Supplement. 6, 50–59.

    Google Scholar 

  • Creighton, S., Stachel, T., Eichenberg, D., & Luth, R. (2010). Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada. Contributions to Mineralogy and Petrology, 159(5), 645–657.

    Google Scholar 

  • Da Silva, C. R. S., Wentzcovitch, R. M., Patel, A., Price, G. D., & Karato, S. I. (2000). The composition and geotherm of the lower mantle: constraints from the elasticity of silicate perovskite. Physics of the Earth and Planetary Interiors, 118,103–109.

    Google Scholar 

  • Davis, F. A., Tangeman, J. A., Tenner, T. J., & Hirschmann, M. M. (2009) The composition of KLB-1 peridotite. American Mineralogist, 94, 176–180.

    Google Scholar 

  • Deuss, A., & Woodhouse, J. (2001). Seismic observations of splitting of the mid-transition zone discontinuity in the Earth’s mantle. Science, 294, 354–357.

    Google Scholar 

  • Deuss, A., Redfern, S. A. T., Chambers, K., & Woodhouse, J.H. (2006). The nature of the 660-kilometer discontinuity in Earth’s mantle from global seismic observations of PP precursors. Science, 311 198–201.

    Google Scholar 

  • Dziewonski A., & Anderson D. (1981) Preliminary reference Earth model. Physics of Earth and Planetary Interiors, 25, 297–356. doi:10.1016/0031-9201(81)90046-7

  • Fiquet, G., Auzende, A. L., Siebert, J., Corgne, A., Bureau, H., Ozawa, H., et al. (2010). Melting of peridotite to 140 Gigapascals. Science, 329, 1516–1518. doi:10.1126/science.1192448

  • Foley, S. F. (2011). A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. Journal of Petrology, 52(7), 1363–1391.

    Google Scholar 

  • Frost, D. J., & McCammon, C. A. (2008). The redox state of Earth’s mantle. Annual Review of Earth and Planetary Sciences, 36, 389–420.

    Google Scholar 

  • Goncharov, A. G., Ionov, D. A., Doucet, L. S., & Pokhilenko, L. N. (2012). Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth and Planetary Science Letters, 357–358, 99–110.

    Google Scholar 

  • Hanger, B. J., Yaxley, G. M., Berry, A. J., & Kamenetsky, V. S. (2014). Relationships between oxygen fugacity and metasomatism in the Kaapvaal subcratonic mantle, represented by garnet peridotite xenoliths in the Wesselton kimberlite, South Africa. Lithos, 212–215, 443–452. doi:10.1016/j.lithos.2014.09.030

  • Hart, S. R., & Zindler A. (1986). In search of a bulk-Earth composition. Chemical Geology, 57(3–4), 247–267.

    Google Scholar 

  • Hirose, K. (2002). Phase transitions in pyrolitic mantle around 670‐km depth: Implications for upwelling of plumes from the lower mantle. Journal of Geophysical Research, 107(B4) 2078. doi:10.1029/2001JB000597

  • Holland, K. G., & Ahrens, T. J. (1997) Melting of (Mg,Fe)2SiO4 at the Core-Mantle Boundary of the Earth. Science, 275, 1623–1625.

    Google Scholar 

  • Holland, T. J. B., Hudson, N. F. C., Powell, R., & Harte, B. (2013). New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle. Journal of Petrology, 54, 1901–1920.

    Google Scholar 

  • Hyung, E., Huang, S., Petaev, M. I., & Jacobsen, S. B. (2016). Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean. Earth and Planetary Science Letters, 440(2016) 158–168. doi:10.1016/j.epsl.2016.02.001

  • Irifune, T., Shinmei, T., McCammon, C. A., Miyajima, N., Rubie, D. C., & Frost D. J. (2010). Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science, 327(5962) 193–195.

    Google Scholar 

  • Ito, E., & Katsura, T. (1989). A temperature profile on the mantle transition zone. Geophysical Research Letters, 16(5), 425–428.

    Google Scholar 

  • Javoy, M. (1995). The integral enstatite chondrite model of the Earth. Geophysical Research Letters, 22(16), 2219–2222.

    Google Scholar 

  • Jeanloz, R., & Knittle, E. (1989). Density and composition of the lower mantle. Philosophical Transactions of the Royal Society of London, A328(1599), 377–389. doi:10.1098/rsta.1989.0042

  • Kaminsky, F. V. (2012). Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth-Science Reviews, 110(1–4), 127–147.

    Google Scholar 

  • Kaminsky, F. V., & Wirth, R. (2011). Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Canadian Mineralogist 49(2), 555–572.

    Google Scholar 

  • Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., & Thomas, R. (2009). Nyerereite and nahcolite inclusions in diamond: Evidence for lower-mantle carbonatitic magmas. Mineralogical Magazine, 73(5), 797–816.

    Google Scholar 

  • Kaminsky, F. V., Wirth, R., & Schreiber, A. (2013) Carbonatitic inclusions in Deep Mantle diamond from Juina, Brazil: New minerals in the carbonate-halide association. Canadian Mineralogist, 51(5), 447–466.

    Google Scholar 

  • Kaminsky, F. V., Ryabchikov, I. D., McCammon, C., Longo, M., Abakumov, A. M., Turner, S., et al. (2015). Oxidation potential in the Earth’s lower mantle as recorded from ferropericlase inclusions in diamond. Earth and Planetary Science Letters, 417, 49–56.

    Google Scholar 

  • Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., & Ito E. (2010). Adiabatic temperature profile in the mantle. Physics of the Earth and Planetary Interiors, 183, 212–218. doi:10.1016/j.pepi.2010.07.001

  • Kennett, B. L. N., & Engdahl, E. R. (1991) Traveltimes for global earthquake location and phase identification. Geophysical Journal of International, 105, 429–465.

    Google Scholar 

  • Kennett, B., Engdahl, E., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal of International, 122, 108–124.

    Google Scholar 

  • Kirby, S. H., Stein, S., Okal, E. A., & Rubie D. C.(1996). Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, 34(2), 261–306.

    Google Scholar 

  • Kustowski, B., Ekström, G., & Dziewoński A. M. (2008). Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. Journal of Geophysical Research, 113, B06306. doi:10.1029/2007JB005169

  • Lazarov, M., Woodland, A. B., & Brey, G. P. (2009). Thermal state and redox conditions of the Kaapvaal mantle: A study of xenoliths from the Finsch mine, South Africa. Lithos, 112S, 913–923.

    Google Scholar 

  • Lin, J-F., Speciale, S., Mao, Z., & Marquardt, H. (2013). Effects of the electronic spin transitions of iron in lower mantle minerals: Implications for deep mantle geophysics and geochemistry. Reviews of Geophysics, 51(2), 244–275.

    Google Scholar 

  • McCammon, C. (1997). Perovskite as a possible sink for ferric iron in the lower mantle. Nature, 387, 694–696.

    Google Scholar 

  • McCammon, C., & Kopylova, M. G. (2004). A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contributions to Mineralogy and Petrology, 148(1), 55–68.

    Google Scholar 

  • McCammon, C., Hutchison, M. T., & Harris J. W. (1997) Ferric iron content of mineral inclusions in diamonds from São Luiz: A view into the lower mantle. Science, 278(5337), 434–436.

    Google Scholar 

  • McCammon, C. A., Lauterbach, S., Seifert, F., Langenhorst, F., & van Aken, P. A. (2004a). Iron oxidation state in lower mantle mineral assemblages. I. Empirical relations derived from high-pressure experiments. Earth and Planetary Science Letters, 222(2), 435–449.

    Google Scholar 

  • McCammon, C. A., Stachel, T., & Harris, J. W. (2004b). Iron oxidation state in lower mantle mineral assemblages. II. Inclusions in diamonds from Kankan, Guinea. Earth and Planetary Science Letters, 222(2), 423–434.

    Google Scholar 

  • Matas, J., Bass, J. D., Ricard, Y., Mattern, E., & Bukowinsky, M. S. (2007). On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophysical Journal International 170, 764–780.

    Google Scholar 

  • McDonough, W. F., & Sun S. S. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253.

    Google Scholar 

  • Morgan, J. W., & Anders E. (1980). Chemical composition of Earth, Venus, and Mercury. Proceedings of the National Academy Science USA, 77(12), 6973–6977. doi:10.1073/pnas.77.12.6973

  • Murakami, M., Ohishi,Y., Hirao, N., & Hirose K. (2012). A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature, 485(7396), 90–94.

    Google Scholar 

  • Nomura, R., Hirose, K., Uesugi, K., Ohishi, Y., Tsuchiyama, A., Miyake, A., et al. (2012). Low core-mantle boundary temperature inferred from the solidus of Pyrolite. Science, 343, 523–525.

    Google Scholar 

  • Otsuka, K., Longo, M., McCammon, C. A., & Karato, S.-i. (2013). Ferric iron content of ferropericlase as a function of composition, oxygen fugacity, temperature and pressure: Implications for redox conditions during diamond formation in the lower mantle. Earth and Planetary Science Letters, 365, 7–16.

    Google Scholar 

  • Ricolleau, A., Fiquet, G., Addad, A., Menguy, N., Vanni, C., Perrillat, J.-P., et al. (2008). Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature. American Mineralogist, 93, 144–153. doi:10.2138/am.2008.2532

  • Ricolleau, A., Fei, Y., Cottrell, E., Watson, H., Deng, L., Zhang, L., et al. (2009). Density profile of pyrolite under the lower mantle conditions. Geophysical Research Letters, 36, L06302. doi:10.1029/2008GL036759

  • Ringwood, A. E. (1975). Composition and petrology of the Earth’s mantle. (p. 618). New York: McGraw-Hill.

    Google Scholar 

  • Rohrbach, A., & Schmidt, M. W. (2011). Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature, 472 209–214.

    Google Scholar 

  • Ryabchikov, I. D., & Kaminsky, F. V. (2013). Redox potential of diamond formation processes in the lower mantle. Geology of Ore Deposits, 55(1), 1–12.

    Google Scholar 

  • Ryabchikov, I. D., & Kaminsky, F. V. (2014). Physico-chemical parameters of material in mantle plumes: Evidence from the thermodynamic analysis of mineral inclusions in sublithospheric diamonds. Geochemistry International, 52(11), 963–971.

    Google Scholar 

  • Shahnas, M. H., Peltier, W. R., Wu, Z., & Wentzcovitch, R. (2011). The high‐pressure electronic spin transition in iron: Potential impacts upon mantle mixing. Journal of Geophysical Research, 116, B08205. DOI:10.1029/2010JB007965

  • Shen, Y., Solomon, S. C., Bjarnson, I. T., & Wolfe, C. J. (1998). Seismic evidence for the lower-mantle origin of the Iceland plume. Nature, 395, 62–65.

    Google Scholar 

  • Simmons, N. A., Forte, A. M., Boschi, L., & Grand S. P. (2010). GyPSuM: A joint tomographic model of mantle density and seismic wave speeds. Journal of Geophysical Research, 115, B12310, doi:10.1029/2010JB007631

  • Simmons, N. A., Forte, A. M., Boschi, L., & Grand, S. P. (2010). GyPSuM: A joint tomographic model of mantle density and seismic wave speeds. Journal of Geophysical Research, 115, B12310. doi:10.1029/2010JB007631

  • Stacey, F. D., & Davis, P. M. (2008). Physics of the Earth. (4th ed., p. 532). Cambridge: Cambridge University Press.

    Google Scholar 

  • Stagno, V., Ojwang, D. O., McCammon, C. A., & Frost, D. J. (2013). The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature, 493, 84–88.

    Google Scholar 

  • Stixrude, L., & Lithgow-Bertelloni, С. (2012). Geophysics of chemical heterogeneity in the mantle. Annual Review of Earth and Planetary Science, 40, 569–595.

    Google Scholar 

  • Stixrude, L., de Koker, N., Sun, N., Mookherjee, M., & Karki, B.B. (2009). Thermodynamics of silicate liquids in the deep Earth. Earth and Planetary Science Letters, 278, 226–232. doi:10.1016/j.epsl.2008.12.006

  • Sun, N., Mao, Z. Yan, S., Lin, J. F., Wu, X., & Prakapenka, V. B. (2016). Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO3-perovskite. Journal of Geophysical Research, 121(7), 4876–4892. doi:10.1002/2016JB013062

  • Tesoniero, A., Auer, L., Boschi, L., & Cammarano, F. (2015). Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity. Journal of Geophysical Research: Solid Earth, 120(11), 7789–7813. doi:10.1002/2015JB012026

  • Turcotte, D. L., & Schubert, G. (2002). Geodynamic, (2nd ed., p. 456).Cambridge: Cambridge University Press.

    Google Scholar 

  • Wang, X. L., Tsuchiya, T., & Hase, A. (2015). Computational support for a pyrolitic lower mantle containing ferric iron. Nature Geoscience, 0, 556–559. doi:10.1038/ngeo2458

  • Williams, Q., & Knittle, E. (2005). The uncertain major element bulk composition of Earth’s mantle. In: R.D. Van der Hilst, J. Bass, J. Matas and J. Trampert (Eds.), Earth’s deep mantle: Structure, composition and evolution. (pp. 189–202). Washington DC: AGU.

    Google Scholar 

  • Wood, B. J., Bryndzya, L. T., & Johnson, K. E. (1990). Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science, 248, 337–344.

    Google Scholar 

  • Woodland, A. B., & Koch, M. (2003). Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth and Planetary Science Letters, 214, 295–310.

    Google Scholar 

  • Yaxley, G. M., Berry, A. J., Kamenetsky, V. S., Woodland, A. B., & Golovin, A. V. (2012) An oxygen fugacity profile through the Siberian Craton—Fe K-edge XANES determinations of Fe3+/ΣFe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos, 140–141, 142–151.

    Google Scholar 

  • Zhang, S., Cottaar, S., Liu, T., Stackhouse, S., & Militzera, B. (2016). High-pressure, temperature elasticity of Fe-and Al-bearing MgSiO3: Implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 264–273. doi:10.1016/j.epsl.2015.11.030

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kaminsky, F.V. (2017). General Physical and Chemical Models of the Earth’s Lower Mantle. In: The Earth's Lower Mantle. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-55684-0_2

Download citation

Publish with us

Policies and ethics