Skip to main content

Mafic Lower-Mantle Mineral Association

  • Chapter
  • First Online:
The Earth's Lower Mantle

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 1262 Accesses

Abstract

Mafic mineral association in the lower mantle is subordinate to the ultramafic one. It includes bridgmanite , CaSi-perovskite , SiO2 and anhydrous aluminous phases . The former three are the same as that observed in the ultramafic association ; but their chemical compositions differ from those in the ultramafic association, mainly in the significant enrichment of Al. Among aluminous phases the NAL phase occurs at low-pressure conditions and is replaced by a CF phase at a depth of 800–1200 km depth. NAL phase is also concentrated in Na and K, while CF phase does not contain K. The partition coefficient of aluminium between bridgmanite and the NAL phase vary from 0.10 to 0.26, demonstrating that the Al enrichment in bridgmanite occurs at the expense of the Al decrease in the NAL phases. The Al concentration in the CF phase remains constant and the Al concentration in bridgmanite, after reaching maximal concentrations (24–25 wt%) with disintegration of the NAL phase, remains constant as well. In addition to the major minerals, phase Egg , δ-AlOOH, and a series of dense hydrous magnesium silicates (DHMS) are expected to be present in the mafic association . Among these DHMS, Phase D and Phase H are most likely to occur in the subducting slabs within the lower mantle. Some of these minerals (phase Egg and δ-AlOOH) are observed in natural geological materials; the others have only been synthesized in laboratory experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrault, D., Pesce, G., Bouhifd, M. A., Bolfan-Casanova, N., Hénot, J.-M., & Mezouar, M. (2014). Melting of subducted basalt at the core-mantle boundary. Science, 344(6186), 892–895.

    Google Scholar 

  • Akaogi, M. (2007). Phase transitions of minerals in the transition zone and upper part of the lower mantle. In E. Ohtani (Ed.), Advances in high-pressure mineralogy (pp. 1–13). Geological Society of America Special Paper 421.

    Google Scholar 

  • Akaogi, M., Hamada, Y., Suzuki, T., Kobayashi, M., & Okada, M. (1999). High pressure transitions in the system MgAl2O4–CaAl2O4: A new hexagonal aluminous phase with implication for the lower mantle. Physics of the Earth and Planetary Interiors, 115, 67–77.

    Google Scholar 

  • Bindi, L., Nishi, M., & Irifune, T. (2015). Partition of Al between phase D and phase H at high pressure: Results from a simultaneous structure refinement of the two phases coexisting in a unique grain. American Mineralogist, 100, 1637–1640. doi:10.2138/am-2015-5327

  • Bindi, L., Nishi, M., Tsuchiya, J., & Irifune, T. (2014). Crystal chemistry of dense hydrous magnesium silicates: The structure of phase H, MgSiH2O4 synthesized at 45 GPa and 10001000 °C. American Mineralogist, 99, 1802–1805. doi:10.2138/am.2014.4994

    Article  Google Scholar 

  • Boffa Ballaran, T., Frost, D. J., Miyajima, N., & Heidelbach, F. (2010). The structure of a super-aluminous version of the dense hydrous-magnesium silicate phase D. American Mineralogist, 95, 1113–1116.

    Google Scholar 

  • Bolfan-Casanova, N., Andrault, D., Amiguet, E., & Guignot, N. (2009). Equation of state and post-stishovite transformation of Al-bearing silica up to 100 GPa and 3000 K. Physics of the Earth and Planetary Interiors, 174, 70–77. doi:10.1016/j.pepi.2008.06.024

  • Chang, Y. Y., Jacobsen, S. D., Lin, J. F., Bina, C. R., Thomas, S.-M., Wu, J., et al. (2013). Spin transition of Fe3+ in Al-bearing dense hydrous magnesium silicate phase D: An alternative explanation for small-scale seismic scatterers in the mid-lower mantle. Earth and Planetary Science Letters, 382, 1–9.

    Google Scholar 

  • Chen, M., Shu, J., Xie, X., & Mao, H.-K. (2003). Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochimica et Cosmochimica Acta, 67, 3937–3942.

    Article  Google Scholar 

  • Chung, J. I., & Kagi, H. (2002). High concentration of water in stishovite in the MORB system. Geophysical Research Letters, 29(21), 2020. doi:10.1029/2002GL015579

    Article  Google Scholar 

  • Churakov, S. V., & Wunder, B. (2004). Ab-initio calculations of the proton location in topaz-OH, Al2SiO4(OH)2. Physics and Chemistry of Minerals, 31, 131–141.

    Article  Google Scholar 

  • Dai, L., Kudo, Y., Hirose, K., Murakami, M., Asahara, Y., Ozawa, H., et al. (2013). Sound velocities of Na0.4Mg0.6Al1.6Si0.4O4 NAL and CF phases to 73 GPa determined by Brillouin scattering method. Physics and Chemistry of Minerals, 40, 195–201.

    Article  Google Scholar 

  • Davies, R. M., Griffin, W. L., O’Reilly, S. Y., & Doyle, B. J. (2004). Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos, 77(1–4), 39–55.

    Article  Google Scholar 

  • Decker, B. F., & Kasper, J. S. (1957). The structure of calcium ferrite. Acta Crystallographica Sect B Structure Science, 42, 229–236.

    Google Scholar 

  • Egglton, R. A., Boland, J. N., & Ringwood, A. E. (1978). High pressure synthesis of a new aluminum silicate: Al5Si5O17(OH). Geochemical Journal, 12, 191–194.

    Google Scholar 

  • Finkelstein, G., Dera, P., Jahn, S., Oganov, A. R., Holl, C. M., Meng, Y., et al. (2014). Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. American Mineralogist, 99(1), 35–43. doi:10.2138/am.2014.4526

    Article  Google Scholar 

  • Frost, D. J. (1999). The stability of dense hydrous magnesium silicates in Earth’s transition zone and lower mantle. In Y. Fei, C. M. Bertka, & B. O. Mysen (Eds.), Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (pp. 283–296). The Geochemical Society Special Publication No. 6.

    Google Scholar 

  • Frost, D. J., & Fei, Y. (1998). Stability of phase D at high pressure and high temperature. Journal of Geophysical Research, 103B, 7463–7474.

    Google Scholar 

  • Frost, D. J., & Fei, Y. (1999). Static compression of the hydrous magnesium silicate phase D to 30 GPa at room temperature. Physics and Chemistry of Minerals, 26, 415–418.  

    Google Scholar 

  • Fukuyama, K., Ohtani, E., Shibazaki, Y., Kagi, H., & Suzuki, A. (2017). Stability field of phase Egg, AlSi3OH at high pressure and high temperature: possible water reservoir in mantle transition zone. Journal of Mineralogical and Petrological Sciences, 112, 31–35. doi:10.2645/jmps.160719e

  • Funamori, N., Jealoz, R., Miyajima, N., & Fujino, K. (2000). Mineral assemblages of basalt in the lower mantle. Journal of Geophysical Research, 105(B11), 26037–26043.

    Google Scholar 

  • Ganskow, G., & Langenhorst, F. (2014). Stability and crystal chemistry of iron-bearing dense hydrous magnesium silicates. Chemie der Erde, 74, 489–496.

    Article  Google Scholar 

  • Gasparik, T., Tripathi, A., & Parise, J. B. (2000). Structure of a new Al-rich phase, [K, Na]0.9[Mg, Fe]2[Mg, Fe, Al, Si]6O12, synthesized at 24 GPa. American Mineralogist, 85, 613–618.

    Article  Google Scholar 

  • Gautron L., Fitz Gerald J. D., Kesson S. E., Eggleton R. A., & Irifune, T. (1997). Hexagonal Ba-ferrite: A good model for the crystal structure of a new high-pressure phase CaAl4Si2O11? Physics of the Earth and Planetary Interiors, 102, 223–229.

    Google Scholar 

  • Gautron, L., Kesson, S. E., & Hibberson, W. O. (1996). Phase relations for CaAI2Si2O8 (anorthite composition) in the system CaO–A12O3–SiO2 at 14 GPa. Physics of the Earth and Planetary Interiors, 97, 71–81.

    Article  Google Scholar 

  • Ghosh, S., & Schmidt, M. W. (2014). Melting of phase D in the lower mantle and implications for recycling and storage of H2O in the deep mantle. Geochimica et Cosmochimica Acta, 145, 72–88.

    Article  Google Scholar 

  • Gleason, A. E., Jeanloz, R., & Kunz, M. (2008). Pressure-temperature stability stud-ies of FeOOH using X-ray diffraction. American Mineralogist, 93, 1882–1885.

    Article  Google Scholar 

  • Gleason, A. E., Quiroga, C. E., Suzuki, A., Pentcheva, R., & Mao, W. L. (2013). Symmetrization driven spin transition in ε-FeOOH at high pressure. Earth and Planetary Science Letters, 379, 49–55. doi:10.1016/j.epsl.2013.08.012

    Article  Google Scholar 

  • Guignot, N., & Andrault, D. (2004). Equations of state of Na–K–Al host phases and implications for MORB density in the lower mantle. Physics of the Earth and Planetary Interiors, 143–144, 107–128.

    Article  Google Scholar 

  • Hayman, P. C., Kopylova, M. G., & Kaminsky, F. V. (2005). Lower mantle diamonds from Rio Soriso (Juina, Brazil). Contributions to Mineralogy and Petrology, 149(4), 430–445.

    Article  Google Scholar 

  • Hirose, K., & Fei, Y. (2002). Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochimica et Cosmochimica Acta, 66, 2099–2108.

    Article  Google Scholar 

  • Hirose, K., Fei, Y., Ma, Y., & Mao, H.-K. (1999). The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397(6714), 53–56.

    Article  Google Scholar 

  • Hirose, K., Takafuji, N., Sata, N., & Ohishi, Y. (2005). Phase transition and density of subducted MORB crust in the lower mantle. Earth and Planetary Science Letters, 237, 239–251.

    Google Scholar 

  • Hushur, A., Manghnani, M. H., Smyth, J. R., Williams, Q., Hellebrand, E., Lonappan, D., et al. (2011). Hydrogen bond symmetrization and equation of state of phase D. Journal Geophysical Research, 116, B06203. doi:10.1029/2010JB008087

    Article  Google Scholar 

  • Hutchison, M. T. (1997). Constitution of the deep transition zone and lower mantle shown by diamonds and their inclusions. Unpublished PhD Thesis. University of Edinburgh, UK. Vol. 1, 340 pp., Vol. 2 (Tables and Appendices), 306 pp.

    Google Scholar 

  • Imada, S., Hirose, K., & Ohishi, Y. (2011). Stabilities of NAL and Ca-ferrite-type phases on the join NaAlSiO4–MgAl2O4 at high pressure. Physics and Chemistry of Minerals, 38, 557–560. doi:10.1007/s00269-011-0427-2

    Article  Google Scholar 

  • Inoue, T., Wada, T., Sasaki, R., & Yurimoto, H. (2010). Water partitioning in the Earth’s mantle. Physics of the Earth and Planetary Interiors, 183, 245–251.

    Article  Google Scholar 

  • Irifune, T., Fujino, K., & Ohtani, E. (1991). A new high-pressure form of MgAl2O4. Nature, 349(6308), 409–411. doi:10.1038/349409a0

    Article  Google Scholar 

  • Irifune, T., & Ringwood, A. E. (1993). Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters, 117(1–2), 101–110.

    Article  Google Scholar 

  • Irifune, T., Ringwood, A. E., & Hibberson, W. O. (1994). Subduction of continental crust and terrigenous and pelagic sediments: An experimental study. Earth and Planetary Science Letters, 126, 351–368.

    Article  Google Scholar 

  • Kaminsky, F. V., Wirth, R., & Schreiber, A. (2015). A microinclusion of lower-mantle rock and some other lower-mantle inclusions in diamond. Canadian Mineralogist, 53(1), 83–104. doi:10.3749/canmin.1400070

    Article  Google Scholar 

  • Kaminsky, F. V., Zakharchenko, O. D., Davies, R., Griffin, W. L., Khachatryan-Blinova, G. K., & Shiryaev, A. A. (2001). Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140(6), 734–753.

    Article  Google Scholar 

  • Kanzaki, M. (1989). High pressure phase relations in the system MgO–SiO2–H2O. Eos, Transactions American Geophysical Union, 70(15), 508.

    Google Scholar 

  • Kanzaki, M. (1991). Stability of hydrous magnesium silicates in the mantle transition zone. Physics of the Earth and Planetary Interiors, 66, 307–312.

    Article  Google Scholar 

  • Kanzaki, M. (2010). Crystal structure of a new high-pressure polymorph of topaz-OH. American Mineralogist, 95, 1349–1352. doi:10.2138/am.2010.3555

    Article  Google Scholar 

  • Kato, C., Hirose, K., Komabayashi, T., Ozawa, H., & Ohishi, Y. (2013). NAL phase in K-rich portions of the lower mantle. Geophysical Research Letters, 40, 5085–5088. doi:10.1002/grl.50966

    Article  Google Scholar 

  • Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., & Ito, E. (2010). Adiabatic temperature profile in the mantle. Physics of the Earth and Planetary Interiors, 183, 212–218. doi:10.1016/j.pepi.2010.07.001

    Article  Google Scholar 

  • Kawai, K., & Tsuchiya, T. (2012) Phase stability and elastic properties of the NAL and CF phases in the NaMg2Al5SiO12 system from first principles. American Mineralorist, 97, 305–314. DPI: 10.2138/am.2012.3915

  • Kesson, S. E., Fitz Gerald, J. D., & Shelley, J. M. (1994). Mineral chemistry and density of subducted basaltic crust at lower mantle pressures. Nature, 372, 767–769.

    Article  Google Scholar 

  • Kirby, S. H., Stein, S., Okal, E. A., & Rubie, D. C. (1996). Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, 34(2), 261–306.

    Article  Google Scholar 

  • Kojitani, H., Hisatomi, R., & Akaogi, M. (2007). High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgAl2O4–Mg2SiO4. American Mineralogist, 92, 1112–1118.

    Article  Google Scholar 

  • Kojitani, H., Iwabuchi, T., Kobayashi, M., Miura, H., & Akaogi, M. (2011). Structure refinement of high-pressure hexagonal aluminous phases K1.00Mg2.00Al4.80Si1.15O12 and Na1.04Mg1.88Al4.64Si1.32O12. American Mineralogist, 96(9), 1248–1253. doi:10.2138/Am.2011.3638

    Article  Google Scholar 

  • Komatsu, K., Kuribayashi, T., Sano, A., Ohtani, E., & KudohY. (2006). Redetermination of the high‐pressure modification of AlOOH from single‐crystal synchrotron data. Acta Crystallograph Sect E 62(11), i216–i218, doi:10.1107/S160053680603916X

  • Komatsu, K., Sano-Furukawa, A., & Kagi, H. (2011). Effects of Mg and Si ions on the symmetry of δ -AlOOH. Physics and Chemistry of Minerals, 38(9), 727–733.

    Article  Google Scholar 

  • Kudoh, Y., Finger, L. W., Hazen, R. M., Prewitt, C. T., Kanzaki, M., & Veblen, D. R. (1993). Phase E: A high pressure hydrous silicate with unique crystal chemistry. Physics and Chemistry of Minerals, 19, 357–360.

    Article  Google Scholar 

  • Kudoh, Y., Kuribayashi, T., Suzuki, A., Ohtani, E., & Kamada, T. (2004). Space group and hydrogen sites of δ-AlOOH and implications for a hypothetical high-pressure form of Mg(OH)2. Physics and Chemistry of Minerals, 31, 360–364.

    Article  Google Scholar 

  • Kudoh, Y., Nagase, T., Mizohata, H., Ohtani, E., Sasaki, S., M. Tanaka, M. (1997) Structure and crystal chemistry of phase G, a new hydrous magnesium silicate synthesized at 22 GPa and 1050 °C. Geophysical Research Letters, 24, 1051–1054.

    Google Scholar 

  • Kudoh, Y., Nagase, T., Sasaki, S., Tanaka, M., & Kanzaki, M. (1995). Phase F, a new hydrous magnesium silicate synthesized at 1000 °C and 17 GPa: Crystal structure and estimated bulk modulus. Physics and Chemistry of Minerals, 22, 295–299.

    Article  Google Scholar 

  • Kurashina, T., Hirose, K., Ono, S., Sata, N., & Ohishi, Y. (2004). Phase transition in Al-bearing CaSiO3 perovskite: Implications for seismic discontinuities in the lower mantle. Physics of the Earth and Planetary Interiors, 145, 67–74.

    Article  Google Scholar 

  • Kuribayashi, T., Sano-Furukawa, A., & Nagase, T. (2013). Observation of pressure-induced phase transition of δ-AlOOH by using single-crystal synchrotron X-ray diffraction method. Physics and Chemistry Minerals, 41(4), 303–312. doi:10.1007/s00269-013-0649-6

    Article  Google Scholar 

  • Lakshtanov, D. L., Sinogeikin, S. V., Konstantin D. Litasov, K. D., Vitali B. Prakapenka, V. B., Hellwig, H., et al. (2007). The post-stishovite phase transition in hydrous Al-bearing SiO2 in the lower mantle of the Earth. Proceedings of the National Academy of Sciences of the USA 104, 13588–13590.

    Google Scholar 

  • Li, S., Ahuja, R., & Johansson, B. (2006). The elastic and optical properties of the high-pressure hydrous phase δ-AlOOH. Solid State Communications, 137(1–2), 101–106. doi:10.1016/j.ssc.2005.08.031

    Article  Google Scholar 

  • Lin, J.-F., Speciale, S., Mao, Z., & Marquardt, H. (2013). Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry. Reviews of Geophysics, 51(2), 244–275.

    Article  Google Scholar 

  • Litasov, K. D., Kagi, H., Shatskiy, A., Ohtani, E., Lakshtanov, D. L., Bass, J. D., et al. (2007a). High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. Earth and Planetary Science Letters, 262(2007), 620–634. doi:10.1016/j.epsl.2007.08.015

    Article  Google Scholar 

  • Litasov, K. D., & Ohtani, E. (2005). Phase relations in hydrous MORB at 18–28 GPa: Implications for heterogeneity of the lower mantle. Physics of the Earth and Planetary Interiors, 150, 239–263. doi:10.1016/j.pepi.2004.10.010

    Article  Google Scholar 

  • Litasov, K. D., & Ohtani, E. (2007). Effect of water on the phase relations in Earth’s mantle and deep water cycle. In E. Ohtani (Ed.), Advances in High-pressure Mineralogy (pp. 115–156). Geological Society of America.

    Google Scholar 

  • Litasov, K. D., Ohtani, E., Nishihara, Y., Suzuki, A., & Funakoshi, K. (2008). Thermal equation of state of Al- and Fe-bearing phase D. Journal Geophysical Research, 113, B08205. doi:10.1029/2007JB004937

    Article  Google Scholar 

  • Litasov, K. D., Ohtani, E., Suzuki, A., & Funakoshi, K. (2007b). The compressibility of Fe- and Al-bearing phase D to 30 GPa. Physics and Chemistry of Minerals, 34, 159–167.

    Article  Google Scholar 

  • Litasov, K., Ohtani, E., Suzuki, A., & Kawazoe, T. (2004). Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity. Geophysical Research Letters, 31, L24607. doi:10.1029/2004GL021306

    Article  Google Scholar 

  • Liu, L. (1977). High pressure NaAlSiO4: The first silicate calcium ferrite isotype. Geophysical Reseach Letters, 4(5), 183–186. doi:10.1029/GL004i005p00183

    Article  Google Scholar 

  • Liu, L.-G. (1986). Phase transformations in serpentine at high pressures and temperatures and implications for subducting lithosphere. Physics of the Earth and Planetary Interiors, 42, 255–262.

    Article  Google Scholar 

  • Liu, L.-G. (1987). Effects of H2O on the phase behavior of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth. Physics of the Earth and Planetary Interiors, 49, 142–167.

    Article  Google Scholar 

  • Mainprice, D., Le Page, Y., Rodgers, J., & Jouanna, P. (2007). Predicted elastic properties of the hydrous D phase at mantle pressures: Implications for the anisotropy of subducted slabs near 670-km discontinuity and in the lower mantle. Earth Planetary Science Letters, 259(3–4), 283–296. doi:10.1016/j.epsl.2007.04.053

    Article  Google Scholar 

  • Mashino, I., Murakami, M., & Ohtani, E. (2016). Sound velocities of δ-AlOOH up to core-mantle boundary pressures with implications for the seismic anomalies in the deep mantle. Journal of Geophysical Research: Solid Earth, 121, 595–609. doi:10.1002/2015JB012477

    Google Scholar 

  • Miura, H., Hamada, Y., Suzuki, T., Akaogi, M., Miyajima, N., & Fujino, K. (2000). Crystal structure of CaMg2Al6O12, a new Al-rich high pressure form. American Mineralogist, 85, 1799–1803.

    Article  Google Scholar 

  • Miyajima, N., Fujino, K., Funamori, N., Kondo, T., & Yagi, T. (1999). Garnet–perovskite transformation under conditions of the Earth’s lower mantle: An analytical transmission electron microscopy study. Physics of the Earth and Planetary Interiors, 116, 117–131.

    Article  Google Scholar 

  • Miyajima, N., Yagi, T., Hirose, K., Kondo, T., Fujino, K., & Miura, H. (2001). Potential host phase of aluminum and potassium in the Earth’s lower mantle. American Mineralogist, 86, 740–746.

    Article  Google Scholar 

  • Mookherjee, M., Karki, B. B., Stixrude, L., Lithgow-Bertelloni, C. (2012). Energetics, equation of state, and elasticity of NAL phase: Potential host for alkali and aluminum in the lower mantle. Geophysical Research Letters 39, LI9306. Doi 10.1029/2012GL053682

  • Mookherjee, M., Tsuchiya, J., & Hariharan, A. (2016). Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures. Physics of the Earth and Planetary Interiors, 251, 24–35. doi:10.1016/j.pepi.2015.11.006

    Article  Google Scholar 

  • Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K., et al. (2014). Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geoscience, 7(3), 224–227.

    Article  Google Scholar 

  • Nishihara, Y., & Matsukage, K. N. (2016). Iron-titanium oxyhydroxides as water carriers in the Earth’s deep mantle. American Mineralogist, 101, 919–927.

    Article  Google Scholar 

  • Northrup, P. A., Leinenweber, K., & Parise, J. B. (1994). The location of H in the high-pressure synthetic Al2SiO4(OH)2 topaz analogue. American Mineralogist, 79, 401–404.

    Google Scholar 

  • Ohira, I., Ohtania, E., Sakaia, T., Miyahara, M., Hirao, N., Ohishi, Y., et al. (2014). Stability of a hydrous δ-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth and Planetary Science Letters, 401, 12–17. doi:10.1016/j.epsl.2014.05.059

    Article  Google Scholar 

  • Ohtani, E., Amaike, Y., Kamada, S., Sakamaki, T., & Hirao, N. (2014). Stability of hydrous phase H MgSiO4H2 under lower mantle conditions. Geophysical Research Letters, 41(23), 8283–8287. doi:10.1002/2014GL061690

    Article  Google Scholar 

  • Ohtani, E., Litasov, K., Hosoya, T., Kubo, T., & Kondo, T. (2004). Water transport into the deep mantle and formation of a hydrous transition zone. Physics of the Earth and Planetary Interiors, 143, 255–269.

    Article  Google Scholar 

  • Ohtani, E., Litasov, K., Suzuki, A., & Kondo, T. (2001a). Stability field of new hydrous phase, δ -AlOOH, with implications for water transport into the deep mantle. Geophysical Research Letters, 28, 3991–3993.

    Article  Google Scholar 

  • Ohtani, E., Mitzobata, H., Kudoh, Y., & Nagase, T. (1997). A new hydrous silicate, a water reservoir, in the upper part of the lower mantle. Geophysical Research Letters, 24, 1047–1050.

    Article  Google Scholar 

  • Ohtani, E., Toma, M., Litasov, K., Kubo, T., & Suzuki, A. (2001b). Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle. Physics of the Earth and Planetary Interiors, 124, 105–117.

    Article  Google Scholar 

  • Ono, S. (1999). High temperature stability of phase “Egg”, AlSiO3(OH). Contributions to Mineralogy and Petrology, 137, 83–89.

    Article  Google Scholar 

  • Ono, A., Akaogi, M., Kojitani, H., Yamashita, K., & Kobayashi, M. (2009). High-pressure phase relations and thermodynamic properties of hexagonal aluminous phase and calcium–ferrite phase in the systems NaAlSiO4–MgAl2O4 and CaAl2O4–MgAl2O4. Physics of the Earth and Planetary Interiors, 174, 39–49.

    Article  Google Scholar 

  • Ono, S., Ito, E., & Katsura, T. (2001). Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth and Planetary Science Letters, 190, 57–63.

    Article  Google Scholar 

  • Otte, K., Pentcheva, R., Schmahl, W. W., & Rustad, J. R. (2009). Pressure-induced structural and electronic transitions in FeOOH from first principles. Physical Review B, 80, 205116. doi:10.1103/PhysRevB.80.205116

    Article  Google Scholar 

  • Pamato, M. G., Kurnosov, A., Boffa Ballaran, T., Trots, D.M., Caracas, R., & Frost, D. J. (2014). Hexagonal Na0.41[Na0.125Mg0.79Al0.085]2[Al0.79Si0.21]6O12 (NAL phase): Crystal structure refinement and elasticity. American Mineralogist 99(8–9), 1562–1569.

    Google Scholar 

  • Pamato, M. G., Myhill, R., Ballaran, T. B., Frost, D. J., Heidelbach, F., & Miyajima, N. (2015). Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nature Geoscience, 8(1), 75–79.

    Google Scholar 

  • Panero, W.R., & Caracas, R. (2017). Stability of phase H in the MgSiO4H2–AlOOH–SiO2 system. Earth and Planetary Science Letters, 463, 171–177. doi:10.1016/j.epsl.2017.01.033

  • Panero, W. R., & Stixrude, L. P. (2004). Hydrogen incorporation in stishovite at high pressure and symmetric bonding in δ-AlOOH. Earth Planetary Science Letters, 221, 421–431.

    Google Scholar 

  • Prewitt, C. T., & Parise, J. B. (2000). Hydrous phases and hydrogen bonding at high pressure. In R. M. Hazen & R. T. Downs (Eds.), High-temperature and high-pressure crystal chemistry (Vol. 41, pp. 309–333). Virginia: Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly.

    Google Scholar 

  • Reagan, M. M., Gleason, A. E., Daemen, L., Xiao, Y., & Mao, W. L. (2016). High-pressure behavior of the polymorphs of FeOOH. American Mineralogist, 101, 1483–1488. doi:10.2138/am-2016-5449

    Article  Google Scholar 

  • Reid, A. F., & Ringwood, A. E. (1969). Newly observed high pressure transformations in Mn3O4, CaAl2O4, and ZrSiO4. Earth and Planetary Science Letters, 6, 205–208. doi:10.1016/0012-821X(69)90091-0

    Article  Google Scholar 

  • Ricolleau, A., Perrillat, J.-P., Fiquet, G., Daniel, I., Matas, J., Addad, A., et al. (2010). Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. Journal Geophysical Research, 115, B08202. doi:10.1029/2009JB006709

    Article  Google Scholar 

  • Ringwood, A. E., & Major, A. (1967). High-pressure reconnaissance investigations in the system Mg2SiO4–MgO–H2O. Earth and Planetary Science Letters, 2, 130–133.

    Article  Google Scholar 

  • Rosa, A. D., Mezouar, M., Garbarino, G., Bouvier, P., Ghosh, S., Rohrbach, A., et al. (2013a). Single-crystal equation of state of phase D to lower mantle pressures and the effect of hydration on the buoyancy of deep subducted slabs. Journal of Geophysical Research: Solid Earth, 118(12), 6124–6133. doi:10.1002/2013JB010060

    Google Scholar 

  • Rosa, A. D., Sanchez-Valle, C., & Ghosh, S. (2012). Elasticity of phase D and implication for the degree of hydration of deep subducted slabs. Geophysical Reseach Letters, 39, L06304. doi:10.1029/2012GL050927

    Google Scholar 

  • Rosa, A. D., Sanchez-Valle, C., Nisr, C., Evans, S. R., Debord, R., & Merkel, S. (2013b). Shear wave anisotropy in textured phase D and constraints on deep water recycling in subduction zones. Earth Planetary Science Letters, 377–378, 13–22.

    Article  Google Scholar 

  • Sano, A., Ohtani, E., Kondo, T., Hirao, N., Sakai, T., Sata, N., et al. (2008). Aluminous hydrous mineral δ-AlOOH as a carrier of hydrogen into the core-mantle boundary. Geophysical Reseach Letters, 35, L03303.

    Google Scholar 

  • Sano, A., Ohtani, E., Kubo, T., & Finakoshi, K. (2004). In situ X-ray observation of decomposition of hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide δ-AlOOH at high pressure and temperature. Journal of Physics and Chemistry of Solids, 65, 1547–1554.

    Article  Google Scholar 

  • Sano-Furukawa, A., Komatsu, K., Vanpeteghem, C. B., & Ohtani, E. (2008). Neutron diffraction study of δ-AlOOD at high pressure and its implication for symmetrization of the hydrogen bond. American Mineralogist, 93(10), 1558–1567. doi:10.2138/am.2008.2849

    Article  Google Scholar 

  • Schmidt, M. W. (1995). Lawsonite: Upper pressure stability and formation of higher density hydrous phases. American Mineralogist, 80, 1286–1292.

    Google Scholar 

  • Schmidt, M. W., Finger, L. W., Ross, R. J., & Dinnebier, R. E. (1998). Synthesis, crystal structure, and phase relations of AlSiO3OH, a high-pressure hydrous phase. American Mineralogist, 83(7–8), 881–888.

    Google Scholar 

  • Shieh, S. R., Duffy, T. S., Liu, Z., & Ohtani, E. (2009). Highpressure infrared spectroscopy of the dense hydrous magnesium silicates phase D and phase E. Physics of the Earth and Planetary Interiors, 175(3–4), 106–114. doi:10.1016/j.pepi.2009.02.002

    Article  Google Scholar 

  • Shieh, S. R., Mao, H. K., Hemley, R. J., & Ming, L. C. (1998). Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth and Planetary Science Letters, 159, 13–23.

    Article  Google Scholar 

  • Shieh, S. R., Mao, H.-K., Hemley, R. J., & Ming, L. C. (2000). In situ X-ray diffraction studies of dense hydrous magnesium silicates at mantle conditions. Earth and Planetary Science Letters, 177, 69–80.

    Article  Google Scholar 

  • Shinmei, T., Irifune, T., Tsuchiya, J., & Funakoshi, K.-I. (2008). Phase transition and compression behavior of phase D up to 46 GPa using multi-anvil apparatus with sintered diamond anvils. High Pressure Research, 28(3), 363–373. doi:10.1080/08957950802246514

    Article  Google Scholar 

  • Stachel, T., Harris, J. W., Brey, G. P., & Joswig, W. (2000). Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contributions to Mineralogy and Petrology, 140(1), 16–27.

    Article  Google Scholar 

  • Suzuki, A., Ohtani, E., & Kamada, T. (2000). A new hydrous phase δ-AlOOH synthesized at 21 GPa and 1000 °C. Physics and Chemistry Mineral, 27, 689–693.

    Article  Google Scholar 

  • Tappert, R., Foden, J., Stachel, T., Muehlenbachs, K., Tappert, M., & Wills, K. (2009). The diamonds of South Australia. Lithos, 112S, 806–821.

    Article  Google Scholar 

  • Thomson, A. R., Kohn, S. C., Bulanova, G. P., Smith, C. B., Araujo, D., EIMF, et al. (2014). Origin of sub‑lithospheric diamonds from the Juina‑5 kimberlite (Brazil): Constraints from carbon isotopes and inclusion Compositions. Contributions to Mineralogy and Petrology 168, 1081, 29 pp.

    Google Scholar 

  • Tschauner, O., Ma, Ch., Beckett, J. R., Prescher, C., Prakapenka, V. B., & Rossman, G. R. (2014). Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346(6213), 1100–1102. doi:10.1126/science.1259369

    Article  Google Scholar 

  • Tsuchiya, J. (2013). First principles prediction of a new high-pressure phase of dense hydrous magnesium silicates in the lower mantle. Geophysical Research Letters, 40, 4570–4573. doi:10.1002/grl.50875

    Article  Google Scholar 

  • Tsuchiya, J., & Tsuchiya, T. (2011). First-principles prediction of a high-pressure hydrous phase of AlOOH. Physics Review B, 83, 054115. doi:10.1103/PhysRevB.83.054115

    Article  Google Scholar 

  • Tsuchiya, J., Tsuchiya, T., & Tsuneyuki, S. (2005). First-principles study of hydrogen bond symmetrization of phase D under high pressure. American Mineralogist, 90, 44–49.

    Article  Google Scholar 

  • Tsuchiya, J., Tsuchiya, T., Tsuneyuki, S., & Yamanaka, T. (2002). First principles calculation of a high-pressure hydrous phase, δ-AIOOH. Geophysical Research Letters, 29(19), 1909. doi:10.1029/2002GL015417

    Article  Google Scholar 

  • Umemoto, K., Kawamura, K., Hirose, K., & Wentzcovitch, R. M. (2016). Post-stishovite transition in hydrous aluminous SiO2. Physics of the Earth and Planetary Interiors, 255, 18–26. doi:10.1016/j.pepi.2016.03.008

    Article  Google Scholar 

  • Vanpeteghem, C., Ohtani, E., Kondo, T., Takemura, K., & Kikegawa, T. (2003). Compressibility of phase Egg AlSiO3OH: Equation of state and role of water at high pressure. American Mineralogist, 88(10), 1408–1411.

    Article  Google Scholar 

  • Vanpeteghem, C. B., Sano, A., Komatsu, K., Ohtani, E., & Suzuki, A. (2007). Neutron diffraction study of aluminous hydroxide δ-AlOOD. Physics Chemistry Minerals, 34(9), 657–661. doi:10.1007/s00269-007-0180-8

    Article  Google Scholar 

  • Walter, M. J., Kohn, S. C., Araujo, D., Bulanova, G. P., Smith, C. B., Gaillou, E., et al. (2011). Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334, 54–57.

    Article  Google Scholar 

  • Walter, M. J., Thomson, A. R., Wang, W., Lord, O. T., Ross, J., McMahon, S. C., et al. (2015). The stability of hydrous silicates in Earth’s lower mantle: Experimental constraints from the systems MgO–SiO2–H2O and MgO–Al2O3–SiO2–H2O. Chemical Geology, 418, 16–29.

    Google Scholar 

  • Wicks, J. K., & Duffy, T. S. (2016). Crystal structures of minerals in the lower mantle. In H. Terasaki & R. A. Fischer (Eds.), Deep earth: Physics and chemistry of the lower mantle and core. Geophysical Monograph (Vol. 217, pp. 69–87).

    Google Scholar 

  • Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S., & Kaminsky, F. (2007). Nanocrystalline hydrous aluminum silicate in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth and Planetary Science Letters, 259(3–4), 384–399.

    Article  Google Scholar 

  • Wu, X., Wu, Y., Lin, J.-F., Liu, J., Mao, Z., Guo, X., et al. (2016a). Two-stage spin transition of iron in FeAl-bearing phase D at lower mantle. Journal of Geophysical Research Solid Earth, 121(9), 6411–6420. doi:10.1002/2016JB013209

  • Wu, Y., Wu, X., Lin, J.-F., McCammon, C. A., Xiao, Y., Chow, P., et al. (2016b). Spin transition of ferric iron in the NAL phase: Implications for the seismic heterogeneities of subducted slabs in the lower mantle. Earth and Planetary Science Letters, 434, 91–100. doi:10.1016/j.epsl.2015.11.011

  • Wunder, B., Rubie, D. C., Ross, C. R., II, Medenbach, O., Seifert, F., & Schreyer, W. (1993). Synthesis, stability and properties and of Al2SiO4(OH)2: A fully hydrated analogue of topaz. American Mineralogist, 78, 285–297.

    Google Scholar 

  • Xue, X., Kanzaki, M., Fukui, H., Ito, E., & Hashimoto, T. (2006). Cation order and hydrogen bonding of high-pressure phases in the Al2O3–SiO2–H2O system: An NMR and Raman study. American Mineralogist, 91, 850–861. doi:10.2138/am.2006.2064

    Article  Google Scholar 

  • Xue, X., Kanzaki, M., & Shatskiy, A. (2008). Dense hydrous magnesium silicates, phase D, and superhydrous B: New structural constraints from one- and two-dimensional 29Si and 1H NMR. American Mineralogist, 93, 1099–1111.

    Article  Google Scholar 

  • Yamada, H., Matsui, Y., & Eiji, I. (1983). Crystal–chemical characterization of NaAlSiO4 with the CaFe2O4 structure. Mineralogical Magazine, 47, 177–181.

    Article  Google Scholar 

  • Yamamoto, K., & Akimoto, S. (1977). The system MgO–SiO2–H2O at high pressures and temperatures-stability field for hydroxyl-chondrodite, hydroxyl-clinohumite and 10 Ǻ-phase. American Journal of Science, 277, 288–312.

    Article  Google Scholar 

  • Yamanaka, T., Uchida, A., & Nakamoto, Y. (2008). Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa. American Mineralogist, 93, 1874–1881. doi 10.2138/am.2008.2934

  • Yang, H., Prewitt, C. T., & Frost, D. J. (1997). Crystal structure of the dense hydrous magnesium silicate, phase D. American Mineralogist, 82, 651–654.

    Article  Google Scholar 

  • Zedgenizov, D. A., Kagi, H., Shatsky, V. S., & Ragozin, A. L. (2014). Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chemical Geology, 240(1–2), 114–124.

    Article  Google Scholar 

  • Zedgenizov, D. A., Shatsky, V. S., Panin, A. V., Evtushenko, O. V., Ragozin, A. L., & Kagi, H. (2015). Evidence for phase transitions in mineral inclusions in superdeep diamonds of the Sao Luiz deposit, Brazil. Russian Geology and Geophysics, 56(1), 296–305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix V. Kaminsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kaminsky, F.V. (2017). Mafic Lower-Mantle Mineral Association. In: The Earth's Lower Mantle. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-55684-0_5

Download citation

Publish with us

Policies and ethics