Skip to main content

Evolution of Yeast Selection for Fuel Ethanol: Breaking Paradigms

  • Chapter
  • First Online:
Diversity and Benefits of Microorganisms from the Tropics

Abstract

In the last 40 years, yeast selection for ethanol production has broken several paradigms such as the replacement of morphological and biochemical test for molecular tools, like electrophoretic karyotyping to monitor yeast populations, contamination by wild yeasts, and selection of dominating and persistent strains. Yeast monitoring allowed to select industrial yeast strains (PE2, CAT1, FT858L, Fermel, BG1, and SA1) that are more robust than baker’s yeast, IZ1904, and laboratory strains that were used frequently by Brazilian distilleries at that time but do not survive more than 4 weeks to successive recycles of alcoholic fermentation processes. Genomic analysis revealed that industrial yeast strains have special traits that allow industrial yeasts to adapt, survive, and dominate the fermentation in comparison with nonindustrial strains. Later, another paradigm was broken when mitochondrial DNA analysis was introduced as an additional technique to karyotyping for identification of strains derived from industrial yeasts. The combination of both methodologies allowed to select a new generation of yeast strains tailored for ethanol production. It was demonstrated that some strains are derived from selected industrial yeasts like PE2. These new strains are better adapted for each process where they arose, once that each distillery has its own fermentation conditions and very specific selection pressures are acting on the yeast population. Finally, the last paradigm broken has been the inclusion of foaming and weakly flocculating yeast strains in selection programs. In the past, these strains were excluded from selection programs because of their unwanted traits. However, it has been an additional source to select the best fitted strains and the number of tailored-yeast strains has expanded every year. These strains represent a huge opportunity to understand the mechanisms of yeast adaptation and a platform to genetic breeding for new industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amorim HV, Lopes ML (2013) Ciência e tecnologia na seleção de leveduras para produção de etanol. In: Almeida JRM (ed) Microrganismos em Agroenergia: da Prospecção aos Bioprocessos, annals. Embrapa Agroenergia, Brasilia. Available from: http://ainfo.cnptia.embrapa.br/digital/bitstream/item/95339/1/DOC15-19-12-2013.pdf [in Portuguese]. Accessed 22 June 2016

  • Amorim HV, Basso LC, Lopes ML (2009) Sugar cane juice and molasses, beet molasses and sweet sorghum: composition and usage. In: Ingledew WM, Kelsall DR, Austin GD, Kluhspies C (eds) The alcohol textbook: a reference for the beverage, fuel, and industrial alcohol industries, 5th edn. Nottingham University Press, Nottingham

    Google Scholar 

  • Amorim HV, Lopes ML, Oliveira JVC, Buckeridge M, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275

    Article  CAS  PubMed  Google Scholar 

  • Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F et al (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19:2258–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A, Nyren P et al (2012) Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Mol Gen Genomics 6:485–494

    Article  Google Scholar 

  • Basso LC, Amorim HV, Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Benítez T, Martínez P, Codón AC (1996) Genetic constitution of industrial yeast. Microbiologia 12:371–384

    PubMed  Google Scholar 

  • Boinot F (1937) Process for carrying out industrial alcoholic fermentations. United States Patent Office PI 2,230,318 https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US2230318.pdf. Accessed on 20 June 2016

  • Ceccato-Antonini SR, Sudbery PE (2004) Filamentous growth in Saccharomyces cerevisiae. Braz J Microbiol 35:173–181

    Article  CAS  Google Scholar 

  • Codón AC, Benítez T, Korhola M (1997) Chromosomal reorganization during meiosis of Saccharomyces cerevisiae Baker’s yeasts. Curr Genet 32:247–259

    Article  PubMed  Google Scholar 

  • Codón AC, Benítez T, Korhola M (1998) Chromosomal polymorphism and adaptation to specific industrial environments of Saccharomyces strains. Appl Microbiol Biotechnol 49:154–163

    Article  PubMed  Google Scholar 

  • Figueiredo CM (2008) Análise molecular da floculação e da formação de espuma por leveduras utilizadas na produção industrial de álcool combustível no Brasil. Dissertation, Universidade Federal de Santa Catarina. https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/91054/252707.pdf?sequence=1&isAllowed=y. Accessed 19 June 2016

  • Gimeno CJ, Fink GR (1994) Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14:2100–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godoy A, Amorim HV, Lopes ML, Oliveira AJ (2008) Continuous and batch fermentation processes: advantages and disadvantages of these processes in the Brazilian ethanol production. Int Sugar J 110:175–181

    CAS  Google Scholar 

  • Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:6041–6052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi O, Yoshimoto H, Sone H (1999) Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae. Curr Genet 36:256–261

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA (2006) Yeast biodiversity: how many and how much? In: Rosa CA, Gabor P (eds) Biodiversity and ecophysiology of yeasts. Springer, Heidelberg

    Google Scholar 

  • Lopes ML (2000) Estudo do polimorfismo cromossômico em Saccharomyces cerevisiae (linhagem PE-2) utilizada no processo industrial de produção de etanol. Thesis, Universidade Estadual Julio de Mesquita Filho

    Google Scholar 

  • Lopes ML, Paulillo SCL, Cherubin RA, Godoy A, Amorim Neto HB, Amorim HV (2015) Tailored-yeast strains for ethanol production: process-driven selection. http://fermentec.com.br/downloads/eBook_-_Tailored_yeast_strains_selected_for_ethanol_production_-_Fermentec.pdf. Accessed 24 July 2016

  • López V, Querol A, Ramo D, Fernandez-Espinar MT (2001) A simplified procedure to analyse mitochondrial DNA from industrial yeasts. Int J Food Microbiol 68:75–81

    Article  PubMed  Google Scholar 

  • Lorenzi MS, Paulillo SCL, Nogueira JHC, Oliveira DFG, Lopes ML, Amorim HV (2013) Desempenho da levedura Fermel® no processo de fermentação com alto teor alcoólico em escala piloto. 27° Congresso Brasileiro de Microbiologia, Resumo 1235–1

    Google Scholar 

  • Shimoi H, Sakamoto K, Okuda M, Atthi R, Iwashita K, Ito K (2002) The AWA1 gene is required for the foam-forming phenotype and cell surface hydrophobicity of sake yeast. Appl Environ Microbiol 68:2018–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stambuk BU, Dunn B, Alves Junior SL, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19:2271–2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezinhet F, Blondin B, Hallet JN (1990) Chromosomal DNA patterns and mitochondrial DNA polymorphism as tools for identification of enological strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 32:568–571

    Article  CAS  Google Scholar 

  • Vezinhet F, Hallet JN, Valade M, Poulard A (1992) Ecological survey of wine yeast strains by molecular methods of identification. Am J Enol Vitic 43:83–86

    Google Scholar 

  • Vicente FAFC (2015) Seleção, avaliação e utilização de uma levedura personalizada para a produção de etanol. Thesis, Universidade Estadual Paulista Julio de Mesquita Filho

    Google Scholar 

  • Wheals AE, Basso LC, Alves DMG, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482–487

    Article  CAS  PubMed  Google Scholar 

  • Zolan ME (1995) Chromosome-length polymorphism in fungi. Microbiol Rev 59:686–698

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to all Fermentec teams: Transfer of Technology, Engineering and New Technologies, Laboratories, Courses and Training of Staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique V. Amorim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Amorim, H.V., de Amorim Neto, H.B., Lopes, M.L., de Lima Paulillo, S.C. (2017). Evolution of Yeast Selection for Fuel Ethanol: Breaking Paradigms. In: de Azevedo, J., Quecine, M. (eds) Diversity and Benefits of Microorganisms from the Tropics . Springer, Cham. https://doi.org/10.1007/978-3-319-55804-2_17

Download citation

Publish with us

Policies and ethics