Skip to main content

Long-Term Trend of Vegetation in Bundelkhand Region (India): An Assessment Through SPOT-VGT NDVI Datasets

  • Chapter
  • First Online:
Climate Change, Extreme Events and Disaster Risk Reduction

Part of the book series: Sustainable Development Goals Series ((SDGS))

Abstract

Vegetation cover is an important natural resource of the terrestrial ecosystem, and it has significant role in preserving the ecological balance in an area. Analyzing the dynamic pattern of vegetation cover and its trend can be a key to explain any unusual condition of the environment. Bundelkhand, located at the central part of India, has experienced recurrent drought events in last decade, and considering the devastating effects of drought in that region, the present study aims to explore the long-term trend of vegetation using geo-spatial technology. The remote sensing-based SPOT-VGT NDVI data were used to identify the changes in vegetation with time. The normalized difference vegetation index (NDVI) has proven to be a very powerful indicator of global vegetation productivity. In this study, we used linear regression model for evaluating the long-term trend of vegetation considering NDVI as dependable and time as independent variable. Our results showed that there is a varying pattern of vegetation trend and its response to rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Billings WD (1952) The environment complex in relation to plant growth and distribution. Q Rev Biol 27(3):251–265

    Article  CAS  Google Scholar 

  • Donohue RJ, McVicar TR, Roderick ML (2009) Climate related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Glob Change Biol 15(4):1025–1039. doi:10.1111/j.1365-2486.2008.01746.x

    Article  Google Scholar 

  • Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40(12):3031–3035. doi:10.1002/grl.50563

    Article  CAS  Google Scholar 

  • Dutta D, Kundu A, Patel NR (2013) Predicting agricultural drought in eastern Rajasthan of India using NDVI and standardized precipitation index. Geocarto Int 28(3):192–209. doi:10.1080/10106049.2012.679975

    Article  Google Scholar 

  • Dutta D, Kundu A, Patel NR, Saha SK, Siddiqui AR (2015) Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt J Remote Sens Space Sci 18(1):53–63. doi:10.1016/j.ejrs.2015.03.006

  • Eckert S, Hüsler F, Liniger H, Hodel E (2015) Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J Arid Environ 113:16–28. doi:10.1016/j.jaridenv.2014.09.001

    Article  Google Scholar 

  • Fan Y, Li X, Wu X, Li L, Li W, Huang Y (2016) Divergent responses of vegetation aboveground net primary productivity to rainfall pulses in the inner Mongolian plateau, China. J Arid Environ 129:1–8. doi:10.1016/j.jaridenv.2016.02.002

    Article  Google Scholar 

  • Fensholt R, Proud SR (2012) Evaluation of Earth observation based global long term vegetation trends-comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ 119:131–147. doi:10.1016/j.rse.2011.12.015

    Article  Google Scholar 

  • Fravolini A, Hultine KR, Brugnoli E, Gazal R, English NB, Williams DG (2005) Precipitation pulse use by an invasive woody legume: the role of soil texture and pulse size. Oecologia 144(4):618–627. doi:10.1007/s00442-005-0078-4

    Article  Google Scholar 

  • Gamon JA, Huemmrich KF, Stone RS, Tweedie CE (2013) Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: decreased vegetation growth following earlier snowmelt. Remote Sens Environ 129:144–153. doi:10.1016/j.rse.2012.10.030

    Article  Google Scholar 

  • Hawinkel P, Swinnen E, Lhermitte S, Verbist B, Orshoven JV, Muys B (2015) A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD). Remote Sens Environ 169:375–389. doi:10.1016/j.rse.2015.08.024

    Article  Google Scholar 

  • Hilker T, Lyapustin AI, Tucker CJ, Hall FG, Myneni RB, Wang YJ, Sellers PJ (2014) Vegetation dynamics and rainfall sensitivity of the Amazon. Proc Natl Acad Sci USA 111(45):16041–16046. doi:10.1073/pnas.1404870111

    Article  CAS  Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7(11):1417–1434. doi:10.1080/01431168608948945

  • Jensen JR (1996) Introductory digital image processing: A remote sensing perspective. Prentice Hall, New Jersey

    Google Scholar 

  • Kundu A, Dutta D (2011) Monitoring desertification risk through climate change and human interference using remote sensing and GIS techniques. Int J Geomat Geosci 2(1):21–33

    Google Scholar 

  • Kundu A, Dutta D, Patel NR, Saha SK, Siddiqui AR (2014) Identifying the process of environmental changes of Churu district, Rajasthan (India) using remote sensing indices. Asia J Geoinf 14(3):14–22

    Google Scholar 

  • Kundu A, Dutta D, Siddiqui AR, Patel NR, Saha SK (2015a) In: Siddiqui A R, Singh P K (eds) Analysis of vegetation response to rainfall with satellite images in Bikaner district, Rajasthan (India): A geo-spatial approach in “Resource Management and Development Strategies: A Geographical Perspective”, Pravalika Publications, Allahabad, Uttar Pradesh, India. pp. 81–88

    Google Scholar 

  • Kundu A, Patel NR, Saha SK, Dutta D (2015b) Monitoring the extent of desertification processes in western Rajasthan (India) using geo-information science. Arab J Geosci 8(8):5727–5737. doi:10.1007/s12517-014-1645-y

    Article  CAS  Google Scholar 

  • Kundu A, Dwivedi S, Dutta D (2016) Monitoring the vegetation health over India during contrasting monsoon years using satellite remote sensing indices. Arab J Geosci 9:144. doi:10.1007/s12517-015-2185-9

    Article  Google Scholar 

  • Kundu A, Patel NR, Saha SK, Dutta D (2017) Desertification in western Rajasthan (India): an assessment using remote sensing derived rain-use efficiency and residual trend methods. Nat Hazards 86(1):297–313. doi:10.1007/s11069-016-2689-y

    Article  Google Scholar 

  • Liu B, Zhao WZ, Wen ZJ (2012) Photosynthetic response of two shrubs to rainfall pulses in desert regions of northwestern China. Photosynthetica 50(1):109–119. doi:10.1007/s11099-012-0015-9

    Article  CAS  Google Scholar 

  • Maisongrande P, Duchemin B, Dedieu G (2004) VEGETATION/SPOT: An operational mission for the Earth monitoring; presentation of new standard products. Int J Remote Sens 25(1):9–14. doi:10.1080/0143116031000115265

    Article  Google Scholar 

  • Martiny N, Camberlin P, Richard Y, Philippon N (2006) Compared regimes of NDVI and rainfall in semi-arid regions of Africa. Int J Remote Sens 27(23):5201–5223. doi:10.1080/01431160600567787

    Article  Google Scholar 

  • Maselli F, Chiesi M, Barbati A, Chirici G, Corona P (2006) Use of remotely sensed and ancillary data for estimating forest gross primary productivity in Italy. Remote Sens Environ 100(4):563–575. doi:10.1016/j.rse.2005.11.010

    Article  Google Scholar 

  • Mazvimavi D (2003) Estimation of flow characteristics of ungauged catchment: case study in Zimbabwe (PhD Thesis). Department of Biometris (WU MAT), Wageningen University and Research Centre (WUR), Wageningen, The Netherlands

    Google Scholar 

  • Mendez-Barroso LA, Vivoni ER, Watts CJ, Rodríguez JC (2009) Seasonal and interannual relations between precipitation, surface soil moisture and vegetation dynamics in the North American monsoon region. J Hydrol 377(1–2):59–70. doi:10.1016/j.jhydrol.2009.08.009

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702. doi:10.1038/386698a0

    Article  CAS  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300(5625):1560–1563. doi:10.1126/science.1082750

    Article  CAS  Google Scholar 

  • Nemani RR, Running SW (1989) Estimation of regional surface resistance to evapotranspiration from NDVI and thermal IR-AVHRR data. J Appl Meteorol 28:276–284. doi:10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2

    Article  Google Scholar 

  • Patel NR, Yadav K (2015) Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region. India. Nat Hazards 77(2):663–677. doi:10.1007/s11069-015-1614-0

  • Piao SL, Wang XH, Ciais P, Zhu B, Wang T, Liu J (2011) Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob Change Biol 17(10):3228–3239. doi:10.1111/j.1365-2486.2011.02419.x

    Article  Google Scholar 

  • Prasad VK, Badarinath KVS, Anuradha E (2007) Spatial patterns of vegetation phenology metrics and related climatic controls of eight contrasting forest types in India-analysis from remote sensing datasets. Theoret Appl Climatol 89:95–107. doi:10.1007/s00704-006-0255-3

    Article  Google Scholar 

  • Rahman H, Dedieu G (1994) SMAC: a simplified method for atmospheric correction of satellite measurements in the solar spectrum. Int J Remote Sens 15(1):123–143. doi:10.1080/01431169408954055

    Article  Google Scholar 

  • Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS, Third ERTS Symposium. NASA SP-351 I:309–317

    Google Scholar 

  • Sahoo RN, Dutta D, Khanna M, Kumar N, Bandyopadhyay SK (2015) Drought assessment in the Dhar and Mewat districts of India using meteorological, hydrological and remote sensing derived indices. Nat Hazards 77(2):733–751. doi:10.1007/s11069-015-1623-z

    Article  Google Scholar 

  • Stoms DM, Hargrove WW (2000) Potential NDVI as a baseline for monitoring ecosystem functioning. Int J Remote Sens 21(2):401–407. doi:10.1080/014311600210920

    Article  Google Scholar 

  • Stow D, Petersen A, Hope A, Engstrom R, Coulter L (2007) Greenness trends of Arctic tundra vegetation in the 1990: comparison of two NDVI data sets from NOAA-AVHRR systems. Int J Remote Sens 28(21):4807–4822. doi:10.1080/01431160701264284

    Article  Google Scholar 

  • Thenkabail PS, Gamage MSDN, Smakhtin VU (2004) The use of remote-sensing data for drought assessment and monitoring in southwest Asia, Research Report 85. International Water Management Institute, Colombo, Sri Lanka

    Google Scholar 

  • Tucker CJ, Fung IY, Keeling CD, Gammon RH (1986) Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature 319:195–199. doi:10.1038/319195a0

    Article  Google Scholar 

  • Wang J, Rich PM, Price KP (2003) Temporal response of NDVI to precipitation and temperature in the central Great Plains, USA. Int J Remote Sens 24(11):2345–2364. doi:10.1080/01431160210154812

  • Wang Q, Tenhunen J, Dinh QN, Reichstein M, Vesala T, Keronen P (2004) Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland. Remote Sens Environ 93(1–2):225–237. doi:10.1016/j.rse.2004.07.006

    Article  Google Scholar 

  • Zhang G, Dong J, Xiao X, Hu Z, Sheldon S (2012) Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecol Eng 38(1):20–29. doi:10.1016/j.ecoleng.2011.09.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, A., Denis, D.M., Patel, N.R., Dutta, D. (2018). Long-Term Trend of Vegetation in Bundelkhand Region (India): An Assessment Through SPOT-VGT NDVI Datasets. In: Mal, S., Singh, R., Huggel, C. (eds) Climate Change, Extreme Events and Disaster Risk Reduction. Sustainable Development Goals Series. Springer, Cham. https://doi.org/10.1007/978-3-319-56469-2_6

Download citation

Publish with us

Policies and ethics