Skip to main content

Resistance of Spodoptera frugiperda to Bacillus thuringiensis Proteins in the Western Hemisphere

  • Chapter
  • First Online:
Bacillus thuringiensis and Lysinibacillus sphaericus

Abstract

Resistance to Bacillus thuringiensis (Bt) Cry1 insecticidal proteins expressed in genetically modified plants (Bt maize and other Bt crops) has been documented in the fall armyworm (FAW; Spodoptera frugiperda [J.E. Smith]) in South America. The factors that led to the onset of resistance include less-than-optimal product characteristics (dose) and poor compliance with the requirement for structured refuges of non-Bt maize. In this article, we review the documented cases of resistance in FAW and explore the path forward to the implementation of effective insect resistance management (IRM) programs to support the sustainable deployment of this technology, particularly in tropical regions. Effective IRM plans require effective product design and management of Bt maize technology. Due to the challenges presented in tropical regions, the development of effective Bt maize pyramids combining highly effective and novel modes of action is fundamental to a successful IRM strategy. The integration of IRM and business imperatives through the development of a multilayer, multi-stakeholder strategy to ensure the proper use of the technology, and particularly to adequate compliance with refuge requirements, is another critical element of an IRM strategy for Bt crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernardi D, Salmeron E, Horikoshi RJ et al (2015a) Cross-resistance between Cry1 proteins in fall armyworm (Spodoptera frugiperda) may affect the durability of current pyramided Bt maize hybrids in Brazil. PLoS One 10(10):e0140130. doi:10.1371/journal.pone.0140130

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardi O, Bernardi D, Amado D et al (2015b) Resistance risk assessment of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 insecticidal protein expressed in corn. J Econ Entomol 108:2711–2719

    Article  PubMed  Google Scholar 

  • Bernardi O, Bernardi D, Ribeiro R et al (2015c) Frequency of resistance to Vip3Aa20 toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil. Crop Prot 76:7–14

    Article  CAS  Google Scholar 

  • Bernardi O, Bernardi D, Horikoshi R et al (2016) Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda. Pest Manag Sci 72:1794–1802

    Article  CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2016) GM crops: global socio-economic and environmental impacts 1996–2014. Available at: http://www.pgeconomics.co.uk/page/42/global-economic-benefits-of-gm-crops-reach-$150-billion

  • Caprio M, Sumerford D, Simms S (2000) Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests. Springer, Amsterdam. pp 805–828. Evaluating transgenic plants for suitability in pest and resistance management programs

    Google Scholar 

  • Carrière Y, Crickmore N, Tabashnik BE (2015) Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol 33:161–168

    Article  PubMed  Google Scholar 

  • Carrière Y, Fabrick JA, Tabashnik BE (2016) Can pyramids and seed mixtures delay resistance to Bt crops? Trends Biotechnol 34(4):391–302

    Article  Google Scholar 

  • Carvalho RA, Omoto C, Field LM et al (2013) Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS One 8(4):e62268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz I, Figueiredo MLC, Silva RB et al (2012) Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm (Spodoptera frugiperda [Smith] [Lepidoptera: Noctuidae]) larvae in maize. Int J Pest Manag 58(1):83–90

    Article  CAS  Google Scholar 

  • Dhurua S, Gujar GT (2011) Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag Sci 67:898–903. doi:10.1002/ps.2127. PMID: 21438121

    Article  CAS  PubMed  Google Scholar 

  • EPA (1998) FIFRA scientific advisory panel, subpanel on Bacillus thuringiensis (Bt) plant pesticides and resistance management, Feb 9–10, 1998. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Farias JR, Andow DA, Horikoshi RJ et al (2014a) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot 64:150–158

    Article  Google Scholar 

  • Farias JR, Horikoshi JR, Santos AC et al (2014b) Geographical and temporal variability in susceptibility to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil. J Econ Entomol 107(6):2182–2189

    Article  PubMed  Google Scholar 

  • Farias JR, Andow DA, Horikoshi RJ et al (2015) Dominance of a Cry1F resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) on TC1507 Bt maize in Brazil. Pest Manag Sci 72(5):974–979

    Article  PubMed  Google Scholar 

  • Farias JR, Andow DA, Horikoshi RJ et al (2016) Frequency of Cry1F resistance alleles in Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Pest Manag Sci. doi:10.1002/ps.4274

    Google Scholar 

  • Flores F, Balbi E (2014) Evaluación del daño de oruga militar (Spodoptera frugiperda) en diferentes híbridos comerciales de maíz transgénico. Maíz Actualización 2014. Inf Actualización Técnica N° 31:23–28

    Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6(7):e22629. doi:10.1371/journal.pone.0022629. PMID: 21829470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726. PMID: 15012402

    Article  CAS  PubMed  Google Scholar 

  • Head GP, Greenplate J (2012) The design and implementation of insect resistance management programs for Bt crops. GM Crop Food 3(3):144–153. doi:10.4161/gmcr.20743

    Article  Google Scholar 

  • Hernández-Rodríguez CS, Hernández-Martínez P, Van Rie J et al (2013) Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. PLoS One 8(7):e68164

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollingsworth RG (2011) Insect pest management of tropical versus temperate crops; patterns of similarities and differences in approach. Acta Hortic 894:45–56

    Article  Google Scholar 

  • Horikoshi RJ, Bernardi O, Bernardi D et al (2015) Near-isogenic Cry1F-resistant strain of Spodoptera frugiperda (Lepidoptera: Noctuidae) to investigate fitness cost associated with resistance in Brazil. J Econ Entomol 109(2):854–859

    Article  Google Scholar 

  • Horikoshi RJ, Bernardi D, Bernardi O et al (2016) Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management. Sci Rep 6:64864. doi:10.1038/srep34864

    Article  Google Scholar 

  • Huang F, Qureshi JA, Meagher RL Jr et al (2014) Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize. PLoS One 9(11):e112958

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang F, Qureshi JA, Head GP, Price PA, Levy R, Yang F, Niu Y (2016) Frequency of Bacillus thuringiensis Cry1A.105 resistance alleles in field populations of the fall armyworm, Spodoptera frugiperda, in Louisiana and Florida. Crop Prot 83:83–89

    Article  CAS  Google Scholar 

  • Hutchison WD et al (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225

    Article  CAS  PubMed  Google Scholar 

  • Jakka SRK, Knight VR, Jurat-Fuentes JL (2014) Fitness costs associated with field-evolved resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae). J Econ Entomol 107(1):342–351

    Article  CAS  PubMed  Google Scholar 

  • James C (2015) Global status of commercialized biotech/GM crops: 2014, ISAAA Brief No. 49. ISAAA, Ithaca

    Google Scholar 

  • Leite NA, Mendes SM, Santos-Amaya OF, Santos CA, Teixeira TPM, Guedes RNC, Pereira EJG (2016) Rapid selection and characterization of Cry1F resistance in a Brazilian strain of fall armyworm. Entomol Exp Appl 158:236–247

    Article  CAS  Google Scholar 

  • Levy HC, Garcia-Maruniak A, Maruniak JE (2002) Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase subunit I gene. Fla Entomol 85:186–190

    Article  CAS  Google Scholar 

  • Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    Article  CAS  PubMed  Google Scholar 

  • Luginbill P (1928) The fall armyworm. USDA Tech Bull 34:91

    Google Scholar 

  • Martinelli S, Omoto C (2005) Resistência de insetos a plantas geneticamente modificadas. Biotecnol Cienc Desenvolv 34:67–77

    Google Scholar 

  • Mitchell ER, McNeil JN, Westbrook JK, Silvain JF, Lalanne-Cassou B, Chalfant RB, Pair SD, Waddill VH, Sotomayor-Rios A, Proshold FI (1991) Seasonal periodicity of fall armyworm, (Lepidoptera: Noctuidae) in the Caribbean basin and northward to Canada. J Entomol Sci 26:39–50

    Google Scholar 

  • Nagoshi RN, Silvie P, Meagher RL Jr (2007) Comparison of haplotype frequencies differentiate fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Florida and Brazil. J Econ Entomol 100:954–961

    Article  PubMed  Google Scholar 

  • Nagoshi NN, Meagher RL, Hay-Roe M (2014) Assessing the resolution of haplotype distributions to delineate fall armyworm (Lepidoptera: Noctuidae) migratory behaviors. J Econ Entomol 107(4):1462–1470. (2014); DOI: http://dx.doi.org/10.1603/EC14124

    Article  PubMed  Google Scholar 

  • Nagoshi RN, Rosas-Garcia NM, Meagher RL, Fleischer SJ, Westbrook JK, Sappington TW, Hay-Roe Thomas JMG, Murua GM (2015) Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behavior. J Econ Entomol 108(1):135–144. doi:10.1093/jee/tou044

    Article  PubMed  Google Scholar 

  • Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use pattern. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 4(11): 1–11. http://www.cabi.org/cabreviews

  • Niu Y, Meagher RL Jr, Yang F et al (2013) Susceptibility of field populations of the fall armyworm (Lepidoptera: Noctuidae) from Florida and Puerto Rico to purified Cry1F protein and corn leaf tissue containing single and pyramided Bt genes. Fla Entomol 96(3):701–713

    Article  CAS  Google Scholar 

  • Niu Y, Yang F, Dangal V, Huang F (2014) Larval survival and plant injury of Cry1F-susceptible, − resistant, and -heterozygous fall armyworm (Lepidoptera: Noctuidae) on non-Bt and Bt corn containing single or pyramided genes. Crop Prot 59:22–28

    Article  Google Scholar 

  • Niu Y, Head GP, Price PA, Huang F (2016a) Performance of Cry1A.105-selected fall armyworm (Lepidoptera: Noctuidae) on transgenic maize plants containing single or pyramided Bt genes. Crop Prot 88:79–87

    Article  CAS  Google Scholar 

  • Niu Y, Qureshi JA, Ni Z, Head GP, Price PA, Meagher RL Jr, Kerns D, Levy R, Yang Z, Huang F (2016b) F2 screen for resistance to Bacillus thuringiensis Cry2Ab2-maize in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) from the southern United States. J Invertebr Pathol 138:66–72

    Article  CAS  PubMed  Google Scholar 

  • NRC – National Research Council (1986) Pesticide resistance: strategies and tactics/or management. National Academy, Washington, DC

    Google Scholar 

  • Okumura RS, Mariano DC, Dallacort R, Zorzenoni TO, Zaccheo PVC, Neto CFO et al (2013) Agronomic efficiency of Bacillus thuringiensis (Bt) maize hybrids in pests control on Lucas do Rio Verde city, state of Mato Grosso, Brazil. Afr J Agric Res 8(19):2232–2239

    Google Scholar 

  • Omoto C, Bernardi O, Salmeron E et al (2016) Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag Sci. doi:10.1002/ps.4201

    Google Scholar 

  • Pashley DP (1986) Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex? Ann Entomol Soc Am 79:898–904

    Article  Google Scholar 

  • Roush RT (1994) Managing pests and their resistance to Bacillus thuringiensis: can transgenic crops be better than sprays? Biocontrol Sci Tech 4:501–516. doi:10.1080/09583159409355364

    Article  Google Scholar 

  • Roush RT (1998) Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Philos Trans R Soc Lond B 353:1777–1786

    Article  CAS  Google Scholar 

  • Santos-Amaya OF, Rodrigues JVC, Souza TC, Tavares CS, Campos SO, Guedes RNC, Pereira EJG (2015) Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events. Sci Rep 5:18243. doi:10.1038/srep18243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Amaya OF, Tavares CS, Monteiro HM, Teixeira TPM, Guedes RN, Alves AP, Pereira EJG (2016) Genetic basis of Cry1F resistance in two Brazilian populations of fall armyworm, Spodoptera frugiperda. Crop Prot 81:154–162

    Article  CAS  Google Scholar 

  • Sparks AN (1979) A review of the biology of the fall armyworm. Fla Entomol 62:82–86

    Article  Google Scholar 

  • Storer NP, Babcock JM, Schlenz M et al (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038

    Article  PubMed  Google Scholar 

  • Storer NP, Kubiszak ME, King JE et al (2012a) Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. J Invertebr Pathol 110:294–300

    Article  PubMed  Google Scholar 

  • Storer NP, Thompson GD, Head GP (2012b) Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops. GM Crop Food 3(3):154–162

    Article  Google Scholar 

  • Sumerford D., Head GP, Shelton A, Greenplate J, Moar W (2013) Field-evolved resistance: assessing the problem and ways to move forward. J Econ Entomol 106(4): 1525–1534. http://dx.doi.org/10.1603/EC13103

    Article  PubMed  Google Scholar 

  • Tabashnik BE (1994) Delaying insect adaptation to transgenic plants: seed mixtures and refugia reconsidered. Proc Biol Sci 255:7–12. doi:10.1098/rspb.1994.0002

    Article  Google Scholar 

  • Tabashnik BE, Carrière Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, Shelton AM, Zhao JZ (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Econ Entomol 96:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26:199–202

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Van Rensburg JBJ, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025. doi:10.1603/029.102.0601

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31(6):510–521. doi:10.1038/nbt.2597. PMID: 23752438

    Article  CAS  PubMed  Google Scholar 

  • Tian JC, Collins HL, Romeis J, Naranjo SE, Hellmich RL, Shelton AM (2012) Using field-evolved resistance to Cry1F maize in a lepidopteran pest to demonstrate no adverse effects of Cry1F on one of its major predators. Transgenic Res 21:1303–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian JC, Wnag XP, Long LP, Romeis J, Naranjo SE, Hellmich RL, Wang P, Earle ED, Shelton AM (2013) Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, Chrysoperla rufilabris. PLoS One 8(3):e60125. doi:10.1371/journal.pone.0060125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trumper EV (2014) Resistencia de insectos a cultivos transgénicos con propiedades insecticidas. Resistencia de insectos a cultivos transgénicos con propiedades insecticidas. Teoría, estado del arte y desafíos para la República Argentina. Agriscientia 31(2):109–126

    Google Scholar 

  • Van Rensburg JBJ (2007) First report of field resistance by the stem borer, Busseola fusca (fuller) to Bt-transgenic maize. S Afr J Plant Soil 24:147–151

    Article  Google Scholar 

  • Velez AM, Spencer TA, Alves AP et al (2013) Fitness costs of Cry1F resistance in fall armyworm, Spodoptera frugiperda. J Appl Entomol 138:315–325

    Article  Google Scholar 

  • Waquil JM, Dourado PM, Carvalho RA et al (2013) Manejo de lepidópteros-praga na cultura do milho com o evento Bt piramidado Cry1A.105 e Cry2Ab2. Pesq Agrop Bras 48(12):1529–1537

    Article  Google Scholar 

  • Westbrook JK, Nagoshi RN, Meagher RL, Fleischer SJ, Jairam S (2016) Modeling seasonal migration of fall armyworm moths. Int J Biometeorol 60:255–267

    Article  CAS  PubMed  Google Scholar 

  • Wolfenbarger LL, Naranjo SE, Lundgren J, Bitzer R, Watrud LS (2008) Bt crop effects on functional guilds of non-target arthropods: a meta-analysis. PLoS One 3(5):e2118. doi:10.1371/journal.pone.0002118

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu KM, Lu YH, Feng HQ, Jiang YY, Zhao JZ (2008) Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321:1676–1678

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Kerns DL, Brown S, Kurtz R, Dennehy T, Braxton B, Head GP, Huang F (2016) Performance and cross-crop resistance of Cry1F-maize selected Spodoptera frugiperda on transgenic Bt cotton: implications for resistance management. Sci Rep 6:28059. doi:10.1038/srep28059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Martinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Martinelli, S., de Carvalho, R.A., Dourado, P.M., Head, G.P. (2017). Resistance of Spodoptera frugiperda to Bacillus thuringiensis Proteins in the Western Hemisphere. In: Fiuza, L., Polanczyk, R., Crickmore, N. (eds) Bacillus thuringiensis and Lysinibacillus sphaericus. Springer, Cham. https://doi.org/10.1007/978-3-319-56678-8_17

Download citation

Publish with us

Policies and ethics