Skip to main content

Environmental Toxicity of Pesticides, and Its Modeling by QSAR Approaches

  • Chapter
  • First Online:
Advances in QSAR Modeling

Abstract

Thousands of environmental pollutants including pesticides , issued from human activities, are accumulated in the environment making a source of danger for the whole ecosystem. Also, the risk assessment process has become a vital and necessary discipline in the legislation to ensure that these pollutants pose no risk or negligible risk to human health, wildlife and the whole ecosystem. The risk assessment carried out for the three natural compartments, namely the terrestrial, the aquatic environment and air, is usually based on experimental studies whose cost is especially high in terms of money, time and laboratory animals. Thus, regulatory agencies are turning to the search for alternative methods less expensive, reliable and fast, which may have a power to predict the potential risks of chemical pollutants. One such toxicological predictive approach is obtained by the development of quantitative models of structure-activity relationships (QSAR). They provide the means for estimating the toxicity of a variety of chemicals in the absence of experimental data on toxicity. In this chapter, a review of publications dedicated to pollution by pesticides and their effects on the entire ecosystem is described. The general principles of the development and validation of QSAR models are also described. Then a critical review of QSAR models published in the literature to date for the prediction of the toxicity of pesticides is also covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson, G. W., Bawden, D., & Saggers, D. T. (1984). Quantitative structure–activity relationship studies of acute toxicity (LD50) in a large series of herbicidal benzimidazoles. Pesticide Science, 15, 31–39.

    Article  CAS  Google Scholar 

  • Agatonovic-Kustrin, S., Morton, D. W., & Razic, S. (2014). In silico modelling of pesticide aquatic toxicity. Combinatorial Chemistry and High Throughput Screen, 17(9), 808–818.

    Article  CAS  Google Scholar 

  • Agrawal, A., Pandey, R. S., & Sharma, B. (2010). Water pollution with special reference to pesticide contamination in India. Journal of Water Resource Protection, 2, 432–448.

    Article  CAS  Google Scholar 

  • Ahouangninou, C., Thibaud, M., Edorh, P., et al. (2012). Characterization of health and environmental risks of pesticide use in market-gardening in the rural city of Tori-Bossito in Benin, West Africa. Journal of Environmental Protection, 3, 241–248.

    Article  CAS  Google Scholar 

  • Ahsan, H., Karim, N., Sanwer Ali, S., et al. (2013). Impact of pesticides contamination on nutritional values of marine fishery from Karachi Coast of Arabian Sea. Food and Nutrition Sciences, 4, 924–932.

    Article  CAS  Google Scholar 

  • AIRPARIF. (2007). Surveillance de la qualité de l’air en Ile de France. Evaluation des concentrations en pesticides dans l’air ambiant francilien: Campagne exploratoire.

    Google Scholar 

  • Akan, J. C., Mohammed, Z., Jafiya, L., et al. (2013). Organochlorine pesticide residues in fish samples from Alau Dam, Borno State, North Eastern Nigeria. Journal of Environmental and Analytical Toxicology, 3, 171. doi:10.4172/2161-0525.1000171.

    Article  Google Scholar 

  • Ali, U., Jabir Hussain, S., Riffat Naseem, M., et al. (2014). Organochlorine pesticides (OCPs) in South Asian region: A review. Science of the Total Environment, 476–477, 705–717.

    Article  CAS  Google Scholar 

  • Andersen, H. R., Ida, M. S., Grandjean, P., et al. (2008). Impaired reproductive development in sons of women occupationally exposed to pesticides during pregnancy. Environmental Health Perspectives, 116(4), 566–572.

    Article  Google Scholar 

  • Arias, L. A., Bojaca, C., Ahumada, A. D., et al. (2014). Monitoring of pesticide residues in tomato marketed in Bogota, Colombia. Food Control, 35, 213–217.

    Article  CAS  Google Scholar 

  • Arzi, A., Hemmati, A. A., & Nazari Khorasgani, Z. (2011). Determination and comparison of the organochlorine pesticide residue levels among benni fish of Shadegan, mahshahr and susangerd cities, Khozestan province in Iran. Jundishapur Journal of Natural Pharmaceutical Products, 6(1), 24–31.

    Google Scholar 

  • Asman, W. A. H., Jorgensen, A., Bossi, R., et al. (2005). Wet deposition of pesticides and nitrophenols at two sites in Denmark: Measurements and contributions from regional sources. Chemosphere, 59, 1023–1031.

    Article  CAS  Google Scholar 

  • Baldi, I., Lebailly, P., Rondeau, V., et al. (2012). Levels and determinants of pesticide exposure in operators involved in treatment of vineyards: Results of the PESTEXPO Study. Journal of Exposure Science and Environmental Epidemiology, 22(6), 593–600.

    Article  Google Scholar 

  • Band, P. R., Abanto, Z., Bert, J., et al. (2011). Prostate cancer risk and exposure to pesticides in British Columbia farmers. Prostate, 71(2), 168–183.

    Article  Google Scholar 

  • Barganska, Z., Slebioda, M., & Namiesnik, J. (2013). Pesticide residues levels in honey from apiaries located of Northern Poland. Food Control, 31, 196–201.

    Article  CAS  Google Scholar 

  • Barjhoux, I. (2011). Thèse de Doctorat: Étude de la biodisponibilité et de la toxicité de polluants chimiques à risque dans les sédiments aquatiques vis-à-vis des premiers stades de développement d’un poisson modèle, Oryzias latipes. Université Bordeaux 1, France.

    Google Scholar 

  • Basant, N., Gupta, S., & Singh, K. P. (2015a). Predicting toxicities of diverse chemical pesticides in multiple avian species using tree-based QSAR approaches for regulatory purposes. Journal of Chemical Information and Modeling, 55(7), 1337–1348. doi:10.1021/acs.jcim.5b00139.

    Article  CAS  Google Scholar 

  • Basant, N., Gupta, S., & Singh, K. P. (2015b). Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches. Chemosphere, 139, 246–255. doi:10.1016/j.chemosphere.2015.06.063.

    Article  CAS  Google Scholar 

  • Bedos, C., Cellier, P., Calvet, R., et al. (2002). Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: Overview. Agronomie, 22, 21–33.

    Article  Google Scholar 

  • Bempah, C. K., Asomaning, J., & Boateng, J. (2012). Market basket survey for some pesticides residues in fruits and vegetables from Ghana. J microbiol biotechnol food sci, 2(3), 850–871.

    Google Scholar 

  • Benfenati, E., Craciun, M., & Neagu, D. (2007). The use of the DEMETRA models. In E. Benfenati (Ed.), Quantitative structure-activity relationship (QSAR) for pesticide regulatory purposes (pp. 303–313). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Borras, E., Sanchez, P., Munoz, A., et al. (2011). Development of a gas chromatography-mass spectrometry method for the determination of pesticides in gaseous and particulate phases in the atmosphere. Analytica Chimica Acta, 699, 57–65.

    Article  CAS  Google Scholar 

  • Bottoni, P. P., Grenni, L., Lucentini, A., et al. (2013). Terbuthylazine and other triazines in Italian water resources. Microchemical Journal, 107, 136–142.

    Article  CAS  Google Scholar 

  • Bretveld, R., Kik, S., Hooiveld, M., et al. (2008). Time-to pregnancy among male greenhouse workers. Occupational and Environmental Medicine, 65, 185–190.

    Article  CAS  Google Scholar 

  • Briand, O. (2003). Influence des facteurs environnementaux et des pratiques agricoles sur les variations spatio-temporelles des niveaux de contamination de l’atmosphère par les pesticides (Doctoral dissertation) Rennes 1 France.

    Google Scholar 

  • Brophy, J. T., Keith, M. M., Gorey, K. M., et al. (2002). Occupational histories of cancer patients in a canadian cancer treatment center and the generated hypothesis regarding breast cancer and farming. International Journal of Occupational Medicine and Environmental Health, 8, 346–353.

    Article  Google Scholar 

  • Burden, N., Maynard, S. K., Weltje, L., et al. (2016). The utility of QSARs in predicting acute fish toxicity of pesticide metabolites: A retrospective validation approach. Regulatory Toxicology and Pharmacology pii, S0273–2300(16), 30146–5. doi:10.1016/j.yrtph.2016.05.032.

    Google Scholar 

  • Cabidoche, Y. M., & Lesueur-Jannoyer, M. (2012). Contamination of harvested organs in root crops grown on chlordecone-polluted soils. Pedosphere, 22(4), 562–571.

    Article  CAS  Google Scholar 

  • Cachot, J. (2014). Assessment of pollution in the Bizerte lagoon (Tunisia) by the combined use of chemical and biochemical markers in mussels, Mytilus gallo-provincialis. Marine Pollution Bulletin, 84, 379–390.

    Article  CAS  Google Scholar 

  • Calatayud-Vernich, P., Calatayud, F., Simo, E., et al. (2016). Influence of pesticide use in fruit orchards during blooming on honeybee mortality in 4 experimental apiaries. Science of the Total Environment, 41, 33–41.

    Article  CAS  Google Scholar 

  • Can, A., Yildiz, I., & Guvendik, G. (2013). The determination of toxicities of sulphonylurea and phenylurea herbicides with quantitative structure-toxicity relationship (QSTR) studies. Environmental Toxicology and Pharmacology, 35(3), 369–379.

    Article  CAS  Google Scholar 

  • Cassani, S., Kovarich, S., Papa, E., et al. (2013). Daphnia and fish toxicity of (benzo) triazoles: Validated QSAR models, and interspecies quantitative activity–activity modelling. Journal of Hazardous Materials, 258(259), 50–60.

    Article  CAS  Google Scholar 

  • Cassotti, M., Consonni, V., Mauri, A., et al. (2014). Validation and extension of a similarity-based approach for prediction of acute aquatic toxicity towards Daphnia magna. SAR and QSAR in Environmental Research, 25, 1013–1036.

    Article  CAS  Google Scholar 

  • Chai, L. K., Wong, M. H., & Bruun Hansen, H. C. (2013). Degradation of chlorpyrifos in humid tropical soils. Journal of Environmental Management, 125, 28–32.

    Article  CAS  Google Scholar 

  • Chevrier, C., Limon, G., Monfort, C., et al. (2011). Urinary biomarkers of prenatal atrazine exposure and adverse birth outcomes in the PELAGIE Birth Cohort. Environmental Health Perspectives, 119, 1034–1041.

    Article  CAS  Google Scholar 

  • Chrisman, J. R., Koifman, S., de Novaes, Sarcinelli P., et al. (2009). Pesticide sales and adult male cancer mortality in Brazil. International Journal of Hygiene and Environmental Health, 212, 310–321.

    Article  Google Scholar 

  • Christiansen, S., Boberg, J., Nelleman, C., et al. (2010). A cocktail of endocrine disrupting pesticides affects sexual differentiation in rats. Reproductive Toxicology, 30(2), 229–229.

    Article  Google Scholar 

  • Coat, S., Monti, D., Legendre, P., et al. (2011). Organochlorine pollution in tropical rivers (Guadeloupe): Role of ecological factors in food web bioaccumulation. Environmental Pollution, 159(6), 1692–1701. doi:10.1016/j.envpol.2011.02.036.

    Article  CAS  Google Scholar 

  • Coscolla, C., Colin, P., Yahyaoui, A., et al. (2010). Occurrence of currently used pesticides in ambient air of center region (France). Atmospheric Environment, 44, 3915–3925.

    Article  CAS  Google Scholar 

  • Coscolla, C., Hart, E., Pastor, A., et al. (2013). LC-MS characterization of contemporary pesticides in PM10 of Valencia Region, Spain. Atmospheric Environment, 77, 394–403.

    Article  CAS  Google Scholar 

  • Costello, S., Cockburn, M., Bronstein, J., et al. (2009). Parkinson’s disease and residential exposure to Maneb and Paraquat From agricultural applications in the Central Valley of California. American Journal of Epidemiology, 169, 919–926.

    Article  Google Scholar 

  • Coupe, R. H., & Blomquist, J. D. (2004). Water-soluble pesticides in finished water of community water supplies. Journal of AWWA, 96, 56–68.

    CAS  Google Scholar 

  • Cruzeiro, C., Rocha, E., Pardal, M. A., et al. (2016). Environmental assessment of pesticides in the Mondego River Estuary (Portugal). Marine Pollution Bulletin, 103, 240–246.

    Article  CAS  Google Scholar 

  • Dabrowski, J. M., Shadung, J. M., & Wepener, V. (2014). Prioritizing agricultural pesticides used in South Africa based on their environmental mobility and potential human health effects. Environment International, 62, 31–40.

    Article  CAS  Google Scholar 

  • Dalvie, M. A., & London, L. (2009). Risk assessment of pesticide residues in South African raw wheat. Crop Protection, 28, 864–869.

    Article  CAS  Google Scholar 

  • Davodi, M., Esmaili-Sari, A., & Bahramifarr, N. (2011). Concentration of polychlorinated biphenyls and organochlorine pesticides in some edible fish species from the Shadegan Marshes (Iran). Ecotoxicology and Environmental Safety, 74, 294–300.

    Article  CAS  Google Scholar 

  • De Gerónimo, E., Aparicio, V. C., Bárbaro, S., et al. (2014). Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere, 107, 423–431.

    Article  CAS  Google Scholar 

  • Dearden, J. C. (2002). Prediction of environmental toxicity and fate using quantitative structure-activity relationships (QSARs). Journal of the Brazilian Chemical Society, 13(6), 754–762.

    Article  CAS  Google Scholar 

  • Dearden, J. C., & Rowe, P. H. (2015). Use of artificial neural networks in the QSAR prediction of physicochemical properties and toxicities for REACH legislation (chapter 5). In H. Cartwright (Ed.), Artificial neural networks, Methods in molecular biology (Vol. 1260). doi:10.1007/978-1-4939-2239-0_5.

  • Devillers, J. (2001). A general QSAR model for predicting the acute toxicity of pesticides to Lepomis macrochirus. SAR and QSAR in Environmental Research, 11, 397–417.

    Article  CAS  Google Scholar 

  • Devillers, J. (2004). Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling. SAR and QSAR in Environmental Research, 15(5), 501–510.

    Article  CAS  Google Scholar 

  • Devillers, J., & Devillers, H. (2009). Prediction of acute mammalian toxicity from QSARs and interspecies correlations. SAR and QSAR in Environmental Research, 20(5–6), 467–500.

    Article  CAS  Google Scholar 

  • Devillers, J., Pham-Delègue, M. H., Decourtye, A., et al. (2002). Structure-toxicity modeling of pesticides to honey bees. SAR and QSAR in Environmental Research, 13(7–8), 641–648.

    Article  CAS  Google Scholar 

  • Dirinck, E. L., Dirtu, A. C., Govindan, M., et al. (2014). Exposure to persistent organic pollutants: Relationship with abnormal glucose metabolism and visceral adiposity. Diabetes Care, 37, 1951–1958.

    Article  CAS  Google Scholar 

  • Eldred, D. V., & Jurs, P. C. (1999). Prediction of acute mammalian toxicity of organophosphorus pesticide compounds from molecular structure. SAR and QSAR in Environmental Research, 10(2), 75–99.

    Article  CAS  Google Scholar 

  • Enslein, K. (1978). A toxicity estimation model. Journal of Environmental Pathology and Toxicology, 2(1), 115–121.

    CAS  Google Scholar 

  • EU. (2006). Official Journal of the European Union L 396, 49, Regulation (EC) N 1907/2006 Article 13 General requirements or generation of information on intrinsic properties of substances.

    Google Scholar 

  • Evangelou, E., Ntritsos, G., Chondrogiorgi, M., et al. (2016). Exposure to pesticides and diabetes: A systematic review and meta-analysis. Environment International, 91, 60–68.

    Article  CAS  Google Scholar 

  • Farajzadeh, M. A., Khoshmaram, L., & Alizadeh Nabil, A. A. (2014). Determination of pyrethroid pesticides residues in vegetable oils using liquid–liquid extraction and dispersive liquid–liquid microextraction followed by gas chromatography–flame ionization detection. Journal of Food Composition and Analysis, 34(2), 128–135.

    Article  CAS  Google Scholar 

  • Feng, J., Tang, H., Chen, D., et al. (2015). Monitoring and risk assessment of pesticide residues in tea samples from China. Human and Ecological Risk Assessment, 21, 169–183.

    Article  CAS  Google Scholar 

  • Fianko, J. R., Donkor, A., Lowor, S. T., et al. (2011). Health risk associated with pesticide contamination of fish from the Densu River Basin in Ghana. Journal of Environmental Protection, 2, 115–123.

    Article  CAS  Google Scholar 

  • Fischer, W. J., Schilter, B., Tritscher, A.M., et al. (2011). Contaminants of milk and dairy products: Contamination resulting from farm and dairy practices. Encyclopedia of Dairy Sciences (2nd ed., pp. 887–897).

    Google Scholar 

  • Floch, C., Chevremont, A. C., Joanico, K., et al. (2011). Indicators of pesticide contamination: Soil enzyme compared to functional diversity of bacterial communities via Biolog Ecoplates. European Journal of Soil Science, 47, 256–263.

    CAS  Google Scholar 

  • Freire, C., & Koifman, S. (2012). Pesticide exposure and Parkinson’s disease: Epidemiological evidence of association. Neurotoxicology, 33(5), 947–971.

    Article  CAS  Google Scholar 

  • Furlong, M., Tanner, C. M., Goldman, S. M., et al. (2015). Protective glove use and hygiene habits modify the associations of specific pesticides with Parkinson’s disease. Environment International, 75, 144–150.

    Article  CAS  Google Scholar 

  • Galiulin, R. V., Bashkin, V. N., Galiulina, R. A., et al. (2002). Behavior of persistent organic pollutants in the airplant-soil system. Water, Air, and Soil Pollution, 37, 179–191.

    Article  Google Scholar 

  • Gao, J., Zhou, H., Pan, G., et al. (2013). Factors influencing the persistence of organochlorine pesticides in surface soil from the region around the Hongze Lake, China. Science of the Total Environment, 443, 7–13.

    Article  CAS  Google Scholar 

  • Garcia-Domenech, R., Alarcon-Elbal, P., Bolas, G., et al. (2007). Prediction of acute toxicity of organophosphorus pesticides using topological indices. SAR and QSAR in Environmental Research, 18(7), 745–755.

    Article  CAS  Google Scholar 

  • Ge, J., Woodward, L. A., Li, Q. X., et al. (2013). Composition, distribution and risk assessment of organochlorine pesticides in soils from the Midway Atoll, North Pacific Ocean. Science of the Total Environment, 452, 421–426.

    Article  CAS  Google Scholar 

  • Golbamaki, A., Cassano, A., Lombardo, A., et al. (2014). Comparison of in silico models for prediction of Daphnia magna acute toxicity. SAR and QSAR in Environmental Research, 25, 673–694.

    Article  CAS  Google Scholar 

  • Gough, J. D., & Hall, L. H. (1999). Modeling the toxicity of amide herbicides using the electrotopological state. Environmental Toxicology and Chemistry, 18, 1069–1075.

    Article  CAS  Google Scholar 

  • Grote, K., Niemann, L., Selzsam, B., et al. (2008). Epoxiconazole causes changes in testicular histology and sperm production in the Japanese quail (Coturnix coturnix japonica). Environmental Toxicology and Chemistry, 27, 2368–2374.

    Article  CAS  Google Scholar 

  • Grung, M., Lin, Y., Zhang, H., et al. (2015). Pesticide levels and environmental risk in aquatic environments in China—A review. Environment International, 81, 87–97.

    Article  CAS  Google Scholar 

  • Grynkiewicz, M., Polkowska, Z., Gorecki, T., et al. (2001). Pesticides in precipitation in the Gdansk region (Poland). Chemosphere, 43(3), 303–312.

    Article  CAS  Google Scholar 

  • Gunier, R. B., Ward, M. H., Airola, M., et al. (2011). Determinants of agricultural pesticide concentrations in carpet dust. Environmental Health Perspectives, 119, 970–976.

    Article  CAS  Google Scholar 

  • Haddaoui, I., Olfa, M., Borhane, M., et al. (2016). Occurrence and distribution of PAHs, PCBs, and chlorinated pesticides in Tunisian soil irrigated with treated wastewater. Chemosphere, 146, 195–205.

    Article  CAS  Google Scholar 

  • Hamadache, M., Benkortbi, O., Hanini, S., et al. (2016a). A quantitative structure activity relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction. Journal of Hazardous Materials, 303, 28–40.

    Article  CAS  Google Scholar 

  • Hamadache, M., Hanini, S., Benkortbi, O., et al. (2016b). Artificial neural network-based equation to predict the toxicity of herbicides on rats. Chemometrics and Intelligent Laboratory Systems, 154, 7–15.

    Article  CAS  Google Scholar 

  • Hamadache, M., Khaouane, L., Benkortbi, O., et al. (2014). Prediction of acute herbicide toxicity in rats from quantitative structure-activity relationship modeling. Environmental Engineering Science, 31(5), 243–252.

    Article  CAS  Google Scholar 

  • Hart, E., Coscolla, C., Pastor, A., et al. (2012). GC-MS characterization of contemporary pesticides in PM10 of Valencia region, Spain. Atmospheric Environment, 62, 118–129.

    Article  CAS  Google Scholar 

  • Hayden, K. M., Norton, M. C., Darcey, D., et al. (2010). Occupational exposure to pesticides increases the risk of incident AD: The Cache County study. Neurology, 74(19), 1524–1530.

    Article  CAS  Google Scholar 

  • Hina, A., Nasim, K., Syed S. A., Munshi, A. B., Shaukat, S. (2013). Impact of pesticides contamination on nutritional values of marine fishery from Karachi Coast of Arabian Sea. Food and Nutrition Sciences, 4, 924–932.

    Google Scholar 

  • Hogarh, J. N., Seike, N., Kobara, Y., et al. (2013). Seasonal variation of atmospheric polychlorinated biphenyls and polychlorinated naphthalenes in Japan. Atmospheric Environment, 80, 275–280.

    Article  CAS  Google Scholar 

  • Hoppin, J. A., Umbach, D. M., London, S. J., et al. (2002). Chemical predictors of wheeze among farmer pesticide applicators in the agricultural health study. American Journal of Respiratory and Critical Care Medicine, 165(5), 683–689.

    Article  Google Scholar 

  • Hoppin, J. A., Valcin, M., Henneberger, P. K., et al. (2007). Pesticide use and chronic bronchitis among farmers in the agricultural health study. American Journal of Industrial Medicine, 50(12), 969–979.

    Article  Google Scholar 

  • Jaacks, L. M., & Staimez, L. R. (2015). Association of persistent organic pollutants and non-persistent pesticides with diabetes and diabetes-related health outcomes in Asia: A systematic review. Environment International, 76, 57–70.

    Article  CAS  Google Scholar 

  • Jiang, Y. F., Wang, X. T., Wu, M. H., et al. (2011). Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in agricultural soil of Shanghai. China Environ Monit Assess, 183, 139–150.

    Article  CAS  Google Scholar 

  • Johnson, S. R. (2008). The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). Journal of Chemical Information and Modeling, 48(1), 25–26.

    Article  CAS  Google Scholar 

  • Juan-Borras, M., Domenech, E., & Escriche, I. (2016). Mixture-risk-assessment of pesticide residues in retail polyfloral honey. Food Control, 67, 127–134.

    Article  CAS  Google Scholar 

  • Kjaerstad, M. B., Taxvig, C., Nellemann, C., et al. (2010). Endocrine disrupting effects in vitro of conazoles antifungals used as pesticides and pharmaceuticals. Reproductive Toxicology, 30, 573–582.

    Article  CAS  Google Scholar 

  • Koureas, M., Tsakalof, A., Tsatsakis, A., et al. (2012). Systematic review of biomonitoring studies to determine the association between exposure to organo-phosphorus and pyrethroid insecticides and human health outcomes. Toxicology Letters, 210, 155–168.

    Article  CAS  Google Scholar 

  • Lagunin, A., Zakharov, A., Filimonov, D., et al. (2011). QSAR modelling of rat acute toxicity on the basis of PASS prediction. Molecular Informatics, 30, 241–250. doi:10.1002/minf.201000151.

    Article  CAS  Google Scholar 

  • Lebov, J. F., Engel, L. S., Richardson, D., et al. (2016). Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the agricultural health study. Occupational and Environmental Medicine, 73, 3–12.

    Article  Google Scholar 

  • Lee, I., Eriksson, P., Fredriksson, A., et al. (2015). Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl. Toxicology and Applied Pharmacology, 288, 429–438.

    Article  CAS  Google Scholar 

  • Lerro, C. C., Koutros, S., Andreotti, G., et al. (2015). Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the agricultural health study. Occupational and Environmental Medicine, 72, 736–744.

    Article  Google Scholar 

  • Liu, D., & Min, S. (2012). Rapid analysis of organochlorine and pyrethroid pesticides in tea samples by directly suspended droplet microextraction using a gas chromatography–electron capture detector. Journal of Chromatography A, 1235, 166–173.

    Article  CAS  Google Scholar 

  • Liu, Y., Shen, D., Li, S., et al. (2016a). Residue levels and risk assessment of pesticides in nuts of China. Chemosphere, 144, 645–651.

    Article  CAS  Google Scholar 

  • Liu, W. X., Wang, Y., He, W., et al. (2016b). Aquatic biota as potential biological indicators of the contamination, bioaccumulation and health risks caused by organochlorine pesticides in a large, shallow Chinese lake (Lake Chaohu). Ecological Indicators, 60, 335–345.

    Article  CAS  Google Scholar 

  • Lozowicka, B., Kaczynski, P., Paritova, A. E., et al. (2014). Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides. Food and Chemical Toxicology, 64, 238–248.

    Article  CAS  Google Scholar 

  • Ma, X. X., & Ran, Y. (2009). The research for organochlorine pesticides in soils of the Pearl River Delta. Ecological Environmental Sciences, 18(1), 134–137.

    Google Scholar 

  • Mas, S., de Juan, A., Tauler, R., et al. (2010). Application of chemometric methods to environmental analysis of organic pollutants: A review. Talanta, 80, 1052–1067.

    Article  CAS  Google Scholar 

  • Mast, M. A., Campbell, D. H., Ingersoll, G. P., et al. (2003). Atmospheric deposition of nutrients, pesticides, and mercury in Rocky Mountain National Park, Colorado, 2002 US Department of the Interior, U.S. Geological Survey Water-Resources Investigations Report 03-4241.

    Google Scholar 

  • Mazzatorta, P., Smiesko, M., Lo Piparo, E., et al. (2005). QSAR model for predicting pesticide aquatic toxicity. Journal of Chemical Information and Modeling, 45(6), 1767–1774.

    Article  CAS  Google Scholar 

  • McKinlay, R., Plant, J. A., Bell, J. N. B., et al. (2008). Endocrine disrupting pesticides: Implications for risk assessment. Environment International, 34, 168–183.

    Article  CAS  Google Scholar 

  • Mills, P. K., & Yang, R. C. (2007). Agricultural exposures and gastric cancer risk in Hispanic farm workers in California. Environmental Research, 104, 282–289.

    Article  CAS  Google Scholar 

  • MOEJ: Ministry of the Environment of Japan. (2015). Chemicals in the environment (p 648).

    Google Scholar 

  • Montgomery, M. P., Kamel, F., Saldana, T. M., et al. (2008). Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural health study 1993–2003. American Journal of Epidemiology, 67, 1235–1246.

    Article  Google Scholar 

  • Mostafalou, S., & Abdollahi, M. (2013). Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology, 268(2), 157–177. doi:10.1016/j.taap.2013.01.025.

    Article  CAS  Google Scholar 

  • Moussaoui, Y., Tuduri, L., Kerchich, Y., et al. (2012). Atmospheric concentrations of PCDD/Fs, dl-PCBs and some pesticides in Northern Algeria using passive air sampling. Chemosphere, 88, 270–277.

    Article  CAS  Google Scholar 

  • Multigner, L. (2005). Effets retardés des pesticides sur la santé humaine. Environnement, Risques et Santé, 3, 187–194.

    Google Scholar 

  • Munaron, D. (2004). Etude des apports en herbicides et en nutriments par la CHARENTE: modélisation de la dispersion de l’atrazine dans le bassin de MARENNES-LERON. Thèse de Doctorat: Université Pierre et Marie Curie, Paris VI France.

    Google Scholar 

  • Nandi, S., Gupta, P. S., Roy, S. C., et al. (2011). Chlorpyrifos and endosulfan affect buffalo oocyte maturation, fertilization, and embryo development in vitro directly and through cumulus cells. Environmental Toxicology, 26(1), 57–67.

    Article  CAS  Google Scholar 

  • Nendza, M. (1991). Predictive QSAR models estimating ecotoxic hazard of phenylureas: Mammalian toxicity. Chemosphere, 22(5–6), 613–623.

    Article  CAS  Google Scholar 

  • Nougadère, A., Sirot, V., Kadar, A., et al. (2012). Total diet study on pesticide residues in France: Levels in food as consumed and chronic dietary risk to consumers. Environment International, 45, 135–150.

    Article  CAS  Google Scholar 

  • Orton, F., Rosivatz, E., Scholze, M., et al. (2011). Widely used pesticides with previously unknown endocrine activity revealed as in vitro antiandrogens. Environmental Health Perspectives, 119(6), 794–800.

    Article  CAS  Google Scholar 

  • Oukali-Haouchine, O., Barriuso, E., Mayata, Y., et al. (2013). Factors affecting Métribuzine retention in Algerian soils and assessment of the risks of contamination. Environmental Monitoring and Assessment, 185, 4107–4115.

    Article  CAS  Google Scholar 

  • Palma, P., Köck-Schulmeyer, M., Alvarenga, P., et al. (2014). Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Science of the Total Environment, 488–489, 208–219.

    Article  CAS  Google Scholar 

  • Papadakis, E. N., Tsaboula, A., Kotopoulou, A., et al. (2015). Pesticides in the surface waters of Lake Vistonis Basin, Greece: Occurrence and environmental risk assessment. Science of the Total Environment, 536, 793–802.

    Article  CAS  Google Scholar 

  • Parron, T., Requena, M., Hernandez, A. F., et al. (2011). Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicology and Applied Pharmacology, 256(3), 379–385.

    Article  CAS  Google Scholar 

  • Peshin, R., & Zhang, W. J. (2014). Integrated pest management and pesticide use (Chapter 1). Integrated pest management (Vol. 3, pp. 1–46). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Polkowska, Z., Kot, A., Wiergowski, M, et al. (2000). Organic pollutants in precipitation: Determination of pesticides and polycyclic aromatic hydrocarbons in Gdansk, Poland. Atmospheric Environment, 34(8), 1233–1245.

    Google Scholar 

  • Provost, D., Cantagrel, A., Lebailly, P., et al. (2007). Brain tumours and exposure to pesticides: A case–control study in Southwestern France. Occupational and Environmental Medicine, 64(8), 509–514.

    Article  CAS  Google Scholar 

  • Qu, C., Qi, S., Yang, D., et al. (2015). Risk assessment and influence factors of organochlorine pesticides (OCPs) in agricultural soils of the hill region: A case study from Ningde, southeast China. Journal of Geochemical Exploration, 149, 43–51.

    Article  CAS  Google Scholar 

  • Raeppel, C., Fabritius, M., Nief, M., et al. (2014). Coupling ASE, silylation and SPME-GC/MS for the analysis of current-used pesticides in atmosphere. Talanta, 121, 24–29.

    Article  CAS  Google Scholar 

  • Rasmussen, J. J., Wiberg-Larsen, P., Baattrup-Pedersen, A., et al. (2015). The legacy of pesticide pollution: An overlooked factor in current risk assessments of freshwater systems. Water Research, 84, 25–32.

    Article  CAS  Google Scholar 

  • Rebich, R. A., Coupe, R. H., & Thurma, E. M. (2004). Herbicide concentrations in the Mississippi River Basin, the importance of chloroacetanilide herbicide degradates. Science of the Total Environment, 321, 189–199.

    Article  CAS  Google Scholar 

  • Saeed, T., Sawaya, W. N., Ahmad, N., et al. (2005). Organophosphorus pesticide residues in the total diet of Kuwait. Arabian Journal of Science and Engineering, 30(1A), 17–27.

    CAS  Google Scholar 

  • Saeedi Saravi, S. S., & Dehpour, A. R. (2016). Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: A review. Life Sciences, 145, 255–264.

    Article  CAS  Google Scholar 

  • Sanagi, M. M., Salleh, S., Ibrahim, W. A. W., et al. (2013). Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. Journal of Food Composition and Analysis, 32, 155–161.

    Article  CAS  Google Scholar 

  • Sazonovas, A., Japertas, P., Didziapetris, R., et al. (2010). Estimation of reliability of predictions and model applicability domain evaluation in the analysis of acute toxicity (LD50). SAR and QSAR in Environmental Research, 21, 127–148.

    Article  CAS  Google Scholar 

  • Scheyer, A., Graeff, C., Morville, S., et al. (2005). Analysis of some organochlorine pesticides in an urban atmosphere (Strasbourg, east of France). Chemosphere, 58(11), 1517–1524.

    Article  CAS  Google Scholar 

  • Schummer, C., Mothiron, E., Appenzeller, B. M. R., et al. (2010). Temporal variations of concentrations of currently used pesticides in the atmosphere of Strasbourg, France. Environmental Pollution, 158, 576–584.

    Article  CAS  Google Scholar 

  • Shoiful, A., Fujita, H., Watanabe, I., et al. (2013). Concentrations of organochlorine pesticides (OCPs) residues in foodstuffs collected from traditional markets in Indonesia. Chemosphere, 90, 1742–1750.

    Article  CAS  Google Scholar 

  • Shojaei Saadi, H., & Abdollahi, M. (2012). Is there a link between human infertilities and exposure to pesticides. International Journal of Pharmacology, 8(8), 708–710.

    Article  Google Scholar 

  • Silva, E., Daam, M. A., & Cerejeira, M. J. (2015). Aquatic risk assessment of priority and other river basin specific pesticides in surface waters of Mediterranean river basins. Chemosphere, 135, 394–402.

    Article  CAS  Google Scholar 

  • Singh, K. P., Gupta, S., Basant, N., et al. (2014). QSTR modeling for qualitative and quantitative toxicity predictions of diverse chemical pesticides in honey bee for regulatory purposes. Chemical Research in Toxicology, 27(9), 1504–1515.

    Article  CAS  Google Scholar 

  • Skretteberg, L. G., Lyrån, B., Holen, B., et al. (2015). Pesticide residues in food of plant origin from Southeast Asia—A Nordic project. Food Control, 51, 225–235.

    Article  CAS  Google Scholar 

  • Slavov, S., Gini, G., & Benfenati, E. (2008). QSAR trout toxicity models on aromatic pesticides. Journal of Environmental Science and Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 43(8), 633–637. doi:10.1080/10934520801893725.

    Article  CAS  Google Scholar 

  • Song, J. S., Moon, T., Nam, K. D., et al. (2008). Quantitative structure-activity relationship (QSAR) studies for fungicidal activities of thiazoline derivatives against rice blast. Bioorganic & Medicinal Chemistry Letters, 18, 2133–2142.

    Article  CAS  Google Scholar 

  • Steen, R. J., Van der Vaart, J., Hiep, M., et al. (2001). Gross fluxes and estuarine behaviour of pesticides in the Scheldt Estuary (1995-1997). Environmental Pollution, 115(1), 65–79.

    Article  CAS  Google Scholar 

  • Stouch, T. R., Kenyon, J. R., Johnson, S. R., et al. (2003). In silico ADME/Tox: Why models fail. Journal of Computer-Aided Molecular Design, 17(2–4), 83–92.

    Article  CAS  Google Scholar 

  • Sullivan, K. M., Manuppello, J. R., & Willett, C. E. (2014). Building on a solid foundation: SAR and QSAR as a fundamental strategy to reduce animal testing. SAR and QSAR in Environmental Research, 25, 357–365.

    Article  CAS  Google Scholar 

  • Sun, J., Pan, L., Zhan, Y., et al. (2016a). Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. Science of the Total Environment, 544, 670–676.

    Article  CAS  Google Scholar 

  • Sun, H., Qi, Y., Zhang, D., et al. (2016b). Concentrations, distribution, sources and risk assessment of organohalogenated contaminants in soils from Kenya, Eastern Africa. Environmental Pollution, 209, 177–185.

    Article  CAS  Google Scholar 

  • Tagert, M. L., Massey, J. H., & Shaw, D. (2014). Water quality survey of Mississippi’s Upper Pearl River. Science of the Total Environment, 481, 564–573.

    Article  CAS  Google Scholar 

  • Takazawa, Y., Takasuga, T., Doi, K. et al. (2016). Recent decline of DDTs among several organochlorine pesticides in background air in East Asia. Environmental Pollution. doi:10.1016/j.envpol.2016.02.019.

  • Todeschini, R., Vighi, M., Provenzani, R., et al. (1996). Modeling and prediction by using WHIM descriptors in QSAR studies: Toxicity of heterogeneous chemicals on Daphnia magna. Chemosphere, 32, 1527–1545.

    Article  CAS  Google Scholar 

  • Tsakiris, I. N., Goumenou, M., Tzatzarakis, M. N., et al. (2015). Risk assessment for children exposed to DDT residues in various milk types from the Greek market. Food and Chemical Toxicology, 75, 156–165.

    Article  CAS  Google Scholar 

  • Van der Mark, M., Brouwer, M., Kromhout, H., et al. (2012). Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results. Environmental Health Perspectives, 120(3), 340–347.

    Article  CAS  Google Scholar 

  • Van Maele-Fabry, G., Hoet, P., & Lison, D. (2013). Parental occupational exposure to pesticides as risk factor for brain tumors in children and young adults: A systematic review and meta-analysis. Environment International, 56, 19–31.

    Article  CAS  Google Scholar 

  • Van Maele-Fabry, G., Hoet, P., Vilain, F., et al. (2012). Occupational exposure to pesticides and Parkinson’s disease: A systematic review and meta-analysis of cohort studies. Environment International, 46, 30–43.

    Article  CAS  Google Scholar 

  • Van Maele-Fabry, G., Lantin, A. C., Hoet, P., et al. (2011). Residential exposure to pesticides and childhood leukaemia: A systematic review and meta-analysis. Environment International, 37(1), 280–291.

    Article  CAS  Google Scholar 

  • Venkatapathy, R., & Wang, N. C. Y. (2013). Developmental toxicity prediction (Chapter 14). In B. Reisfeld & A. N. Mayeno (Eds.), Computational toxicology: Volume II, methods in molecular biology (Vol. 930, pp. 305–340). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Verma, J. P., Jaiswal, D. K., & Sagar, R. (2014). Pesticide relevance and their microbial degradation: A-state-of-art. Reviews in Environmental Science & Biotechnology, 13, 429–466.

    Article  Google Scholar 

  • Vighi, M., Masoero Garlanda, M., & Calamari, D. (1991). QSARs for toxicity of organophosphorus pesticides to Daphnia and honeybees. Science of the Total Environment, 109(110), 605–622.

    Article  Google Scholar 

  • Wan, Y. W., Tang, T. F., Zhou, Z. L. et al. (2009). Distribution and sources of organochlorine pesticides in Beijing Guanting Reservoir. Journal of Ecology and Rural Environment, 25(1), 53–56, 68.

    Google Scholar 

  • Wang, J., Kliks, M. M., Jun, S., et al. (2010). Residues of organochlorine pesticides in honeys from different geographic regions. Food Research International, 43, 2329–2334.

    Article  CAS  Google Scholar 

  • Wang, J. Y., Yu, X. W., & Fang, L. (2014). Organochlorine pesticide content and distribution in coastal seafoods in Zhoushan, Zhejiang Province. Marine Pollution Bulletin, 80, 288–292.

    Article  CAS  Google Scholar 

  • Wang, B., Zhao, J. S., Yu, Y. J., et al. (2004). Quantitative structure-activity relationships and joint toxicity of substituted biphenyls]. Huan Jing Ke Xue, 25(3), 89–93.

    Google Scholar 

  • Wigle, D. T., Turner, M. C., & Krewski, D. (2009). A systematic review and meta-analysis of childhood leukemia and parental occupational pesticide exposure. Environmental Health Perspectives, 117, 1505–1513.

    Article  CAS  Google Scholar 

  • Wu, H., Bertrand, K. A., Choi, A. L., et al. (2013a). Persistent organic pollutants and type 2 diabetes: A prospective analysis in the nurses’ health study and meta-analysis. Environmental Health Perspectives, 121, 153–161.

    Google Scholar 

  • Wu, C., Luo, Y., Gui, T., et al. (2014). Concentrations and potential health hazards of organochlorine pesticides in shallow groundwater of Taihu Lake region, China. Science of the Total Environment, 470–471, 1047–1055.

    Article  CAS  Google Scholar 

  • Wu, W. J., Qin, N., Zhu, Y., et al. (2013b). The residual levels and health risks of hexachlorocyclohexanes (HCHs) and dichloro-diphenyl-trichloroethanes (DDTs) in the fish from Lake Baiyangdian, North China. Environmental Science and Pollution Research, 20, 5950–5962.

    Article  CAS  Google Scholar 

  • Xu, M., Qiu, Y., Bignert, A., et al. (2015). Organochlorines in free- range hen and duck eggs from Shanghai: Occurrence and risk assessment. Environmental Science and Pollution Research, 22, 1742–1749.

    Article  CAS  Google Scholar 

  • Yao, Y., Harner, T., Blanchard, P., et al. (2008). Pesticides in the atmosphere across Canadian agricultural regions. Environmental Science and Technology, 42, 5931–5937.

    Article  CAS  Google Scholar 

  • Yuan, Y., Chen, C., Zheng, C., et al. (2014). Residue of chlorpyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China. Food Control, 36, 63–68.

    Article  CAS  Google Scholar 

  • Yusà, V., Coscollà, C., & Millet, M. (2014). New screening approach for risk assessment of pesticides in ambient air. Atmospheric Environment, 96, 322–330.

    Article  CAS  Google Scholar 

  • Zahouily, M., Rhihil, A., Bazoui, H., et al. (2002). Structure-toxicity relationships study of a series of organophosphorus insecticides. Journal of Molecular Modeling, 8(5), 168–172.

    Article  CAS  Google Scholar 

  • Zakarya, D., Boulaamail, A., Larfaoui, E. M., et al. (1997). QSARs for toxicity of DDT-type analogs using neural network. SAR and QSAR in Environmental Research, 6, 183–203.

    Article  CAS  Google Scholar 

  • Zakarya, D., Larfaoui, E. M., Boulaamail, A., et al. (1996). Analysis of structure-toxicity relationships for a series of amide herbicides using statistical methods and neural network. SAR and QSAR in Environmental Research, 5(4), 269–279.

    Article  CAS  Google Scholar 

  • Zakharov, A., & Lagunin, A. (2014). Computational toxicology in drug discovery: Opportunities and limitations (Chapter 11). In: L. Gorb et al. (Ed.), Application of computational techniques in pharmacy and medicine, challenges and advances in computational chemistry and physics (Vol. 17, pp. 325–367). Springer.

    Google Scholar 

  • Zhang, L., Dong, L., Shi, S., et al. (2009). Organochlorine pesticides contamination in surface soils from two pesticide factories in Southeast China. Chemosphere, 77, 628–633.

    Article  CAS  Google Scholar 

  • Zhang, L., Dong, L., Yang, W., et al. (2013). Passive air sampling of organochlorine pesticides and polychlorinated biphenyls in the Yangtze River Delta, China: Concentrations, distributions, and cancer risk assessment. Environmental Pollution, 181, 159–166.

    Article  CAS  Google Scholar 

  • Zhang, W. J., Jiang, F. B., & Ou, J. F. (2011). Global pesticide consumption and pollution: With China as a focus. Proceedings of the International Academy of Ecology and Environmental Science, 1(2), 125–144.

    CAS  Google Scholar 

  • Zhang, H., Luo, Y., Zhao, Q., et al. (2006). Residues of organochlorine pesticides in Hong Kong soils. Chemosphere, 63, 633–641.

    Article  CAS  Google Scholar 

  • Zhang, X., Wu, M., Yao, H., et al. (2016). Pesticide poisoning and neurobehavioral function among farm workers in Jiangsu, People’s Republic of China. Cortex, 74, 396–404.

    Article  Google Scholar 

  • Zhao, L., Hou, H., & Guo, P. Y. (2009). Distribution of organochlorine pesticides in soils in Haihe River and Haihe estuary area. China Environmental Science, 30(2), 543–550.

    Google Scholar 

  • Zheng, S., Chen, B., Qiu, X., et al. (2016). Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere, 144, 1177–1192.

    Article  CAS  Google Scholar 

  • Zhou, Q., Sun, X., Gao, R., et al. (2010). Mechanism study on OH-initiated atmospheric degradation of the organophosphorus pesticide chlorpyrifos. Journal of Molecular Structure THEOCHEM, 952, 8–15.

    Article  CAS  Google Scholar 

  • Zhu, H., Martin, T. M., Ye, L., et al. (2009a). Quantitative structure—Activity relationship modeling of rat acute toxicity by oral exposure. Chemical Research in Toxicology, 22(12), 1913–1921.

    Article  CAS  Google Scholar 

  • Zhu, H., Ye, L., Richard, A., et al. (2009b). A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents. Environmental Health Perspectives, 117(8), 1257–1264.

    Article  CAS  Google Scholar 

  • Zvinavashe, E., Du, T., Griff, T., et al. (2009). Quantitative structure-activity relationship modeling of the toxicity of Organothiophosphate pesticides to Daphnia magna and Cyprinus carpio. Chemosphere, 75(11), 1531–1538. doi:10.1016/j.chemosphere.2009.01.081.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mabrouk Hamadache or Abdeltif Amrane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hamadache, M., Amrane, A., Benkortbi, O., Hanini, S., Khaouane, L., Si Moussa, C. (2017). Environmental Toxicity of Pesticides, and Its Modeling by QSAR Approaches. In: Roy, K. (eds) Advances in QSAR Modeling. Challenges and Advances in Computational Chemistry and Physics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-56850-8_13

Download citation

Publish with us

Policies and ethics