Skip to main content

Addressing a Single Molecular Spin with Graphene-Based Nanoarchitectures

  • Conference paper
  • First Online:
Molecular Architectonics

Abstract

Finding reliable methods to exploit molecular degrees of freedom represents an intriguing problem involving the control of new mechanisms at the nanoscale and several technological challenges. Here, we report a novel approach to address a single molecular spin embedded in an electronic circuit. Our devices make use of molecules with well-defined magnetic anisotropy (TbPc2) embedded in nanogapped electrodes obtained by electroburning graphene layers. Such devices work as molecular spin transistors allowing the detection of the Tb spin flip during the sweep of an external magnetic field. The spin readout is made by the molecular quantum dot that, in turns, is driven by an auxiliary gate voltage. In the general context of (spin-)electronics, these results demonstrate that: (1) molecular quantum dots can be used as ultra-sensitive detectors for spin flip detection and (2) the use of graphene electrodes as a platform to contact organometallic molecules is a viable route to design more complex nanoarchitectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, L., Diaz-Fernandez, Y.A., Gschneidtner, T.A., Westerlund, F., Lara-Avila, S. Moth-Poulsen, K.: Chem. Soc. Rev. 43, 7378–7411 (2014). doi:10.1039/c4cs00143e

  2. Aviram, A., Ratner, M.A.: Chem. Phys. Lett. 29, 277 (1974). doi:10.1016/0009-2614(74)85031-1

  3. Park, H., Park, J., Lim, A.K.L., Anderson, E.H., Alivisatos, A.P., McEuen, P.L.: Nature 407, 57 (2000). doi:10.1038/35024031

  4. Osorio, E.A., O’Neill, K., Stuhr-Hansen, N., Nielsen, O.F., Bjørnholm, T., van der Zant, H.S.J.: Adv. Mater. 19 (2), 281 (2007). doi:10.1002/adma.200601876

  5. Kubatkin, S., Danilov, A., Hjort, M., Cornil, J., Bredas, N., Stuhr-Hansen, J.L., Hedegard, P., Bjørnholm, T.: Nature 425, 698 (2003). doi:10.1038/nature02010

  6. Park, J., Pasupathy, A.N., Goldsmith, J.I., Chang, C., Yaish, Y., Petta, J.R., Rinkoski, M., Sethna, J.P., Abruna, H.D., McEuen, P.L., Ralph, D.C.: Nature 417, 722 (2002). doi:10.1038/nature00791

  7. Liang, W.J., Shores, M.P., Bockrath, M., Long, J.R., Park, H.: Nature 417, 725 (2002). doi:10.1038/nature00790

  8. Lörtscher, E.: Nature Nanotechnol. 8, 381–384 (2013). doi:10.1038/nnano.2013.105

  9. Bumm, L.A., Arnold, J.J., Cygan, M.T., Dunbar, T.D., Burgin, T.P., Jones, T.P., Allara, D.L., Tour J.M., Weiss, P.S.: Science 271, 1705–1707 (1996). doi:10.1126/science.271.5256.1705

  10. Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M.: Science 278, 252–254 (1997). doi:10.1126/science.278.5336.252

  11. Park, H., Lim, A.K.L., Alivisatos, A.P., Park, J., McEuen, P.L.: Appl. Phys. Lett. 75, 301–303 (1999). doi:10.1063/1.124354

  12. Moth-Poulsen, K., Bjørnholm, T.: Nature Nanotechnol. 4, 551–556 (2009). doi:10.1038/nnano.2009.176

  13. Ratner, M.: Nat. Nanotechnol. 8, 378–381 (2013). doi:10.1038/nnano.2013.110

  14. Perrin, M.L., Verzijl, C.J.O., Martin, C.A., Shaikh, A.J., Eelkema, R., van Esch, J.H., van Ruitenbeek, J.M., Thijssen, J.M., van der Zant, H.S.J., Dulić, D., Nature Nanotechnol. 8, 282–287 (2013)

    Google Scholar 

  15. Bergvall, A., Berland, K., Hyldgaard, P., Kubatkin, S., Löfwander, T.: Phys. Rev. B 84, 155451 (2011). doi:10.1103/PhysRevB.84.155451

  16. García-Suárez, V.M, Ferradás, R., Carrascal, D., Ferrer, J., Phys. Rev. B 87, 235425 (2013). doi:10.1103/PhysRevB.87.235425

  17. Ryndyk, D.A., Bundesmann, J., Liu, M.-H., Richter, K.: Phys. Rev. B 86, 195425 (2012), doi:10.1103/PhysRevB.86.195425

  18. Péterfalvi, C. G., Lambert, C. J.: Phys. Rev. B 86, 085443 (2012), doi:10.1103/PhysRevB.86.085443

  19. Prasongkit, J., Grigoriev, A., Pathak, B., Ahuja, R., Scheicher, R.H.: J. Phys. Chem. C 117, 15421–15428 (2013). doi:10.1021/jp4048743

  20. Pshenichnyuk, I.A., Coto, P. B., Leitherer, S., Thoss, M.: J. Phys. Chem. Lett. 4, 809–814 (2013). doi:10.1021/jz400025q

  21. Prins, F., Barreiro, A., Ruitenberg, J.W., Seldenthuis, J.S., Aliaga-Alcalde, N., Vandersypen, L.M.K., van der Zant, H.S.J.: Nano Lett. 11, 4607–4611 (2011). doi:10.1021/nl202065x

  22. Cao, Y., Dong, S., Liu, S., He, L., Gan, L., Yu, X., Steigerwald, M. L., Wu, X., Liu, Z., Guo, X.: Angew. Chem. Int. Ed. 51, 12228–12232 (2012). doi:10.1002/anie.201205607

  23. Jia, C., Wang, J., Yao, C., Cao, Y., Zhong, Y., Liu, Z., Liu, Z., Guo, X.: Angew. Chem. Int. Ed. 52, 1–6 (2013). doi:10.1002/anie.201304301

  24. Cao, Y., Dong, S., Liu, S., Liu, Z., Guo, X.: Angew. Chem. Int. Ed. 52, 3906–3910 (2013). doi:10.1002/anie.201208210

  25. Burzurí, E., Prins, F., van der Zant, H.S.J., Graphene 01, 26–29 (2012). doi:10.4236/graphene.2012.12004

  26. Nef, C., Pósa, L., Makk, P., Fu, W., Halbritter, A., Schönenberger, C., Michel, C.: Nanoscale 6, 7249–7254 (2014). doi:10.1039/c4nr01838a

  27. Lau, C.S., Mol, J.A., Warner, J.H., Briggs, G.A.D.: Phys. Chem. Chem. Phys. 16, 20398–20401 (2014). doi:10.1039/c4cp03257h

  28. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hee, B.: Nature 457, 706 (2009). doi:10.1038/nature07719

  29. Zyasin, A.S., van den Berg, J.W.G., Osorio, E.A., van der Zant, H.S.J., Konstantinidis, N.P., Leijnse, M., Wegewijs, M.R., May, F., Hofstetter, W., Danieli C., Cornia A.: Nano Lett. 10, 3307 (2010). doi:10.1021/nl1009603

  30. Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Balestro, F.: Nature 488, 357 (2012). doi:10.1038/nature11341

  31. Burzurí, E., Zyasin, A.S., Cornia, A., van der Zant, H.S.J.: Phys. Rev. Lett. 109, 147203 (2012). doi:10.1103/PhysRevLett.109.147203

  32. Bogani, L., Wernsdorfer, W.: Nat. Mater. 7, 179–186 (2008). doi:10.1038/nmat2133

  33. Thiele, S., Balestro, F., Ballou, R., Klyatskaya, S., Ruben, M., Wernsdorfer W.: Science 344, 1135–1138 (2014). doi:10.1126/science.1249802

  34. Forbeaux, I., Themlin, J.M., Debever, J.M.: Phys. Rev. B 58, 16396–16406 (1998). doi:10.1103/PhysRevB.58.16396

  35. Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: J. Phys. Chem. B 108, 19912–19916 (2004). doi:10.1021/jp040650f

  36. Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Science 313, 951–954 (2006). doi:10.1126/science.1130681

  37. Virojanadara, C., Syväjarvi, M., Yakimova, R., Johansson, L.I., Zakharov, A.A., Balasubramanian, T.: Phys. Rev. B, 78, 245403 (2008). doi:10.1103/PhysRevB.78.245403

  38. Hanson, R., Kouwenhoven, L.P., Petta, J.R., Tarucha, S., Vandersypen, L.M.K.: Rev. Mod. Phys. 79, 1217–1265 (2007). doi:10.1103/RevModPhys.79.1217

  39. Candini, A., Klar, D., Marocchi, S., Corradini, V., Biagi, R., De Renzi, V., del Pennino, U., Troiani, F., Bellini, V., Klyatskaya, S., Ruben, M., Kummer, K., Brookes, N.B., Huang, H., Soncini, A., Wende, H., Affronte, M.: Sci. Rep. 6, 21740 (2016)

    Google Scholar 

  40. Frewin, C.L., Coletti C., Riedl, C., Strake, U., Saddow, S.E.: Mater. Sci. Forum 615–617, 589-592 (2009). doi:10.4028/www.scientific.net/MSF.615-617.589

  41. Starke, U., Forti, S., Emtsev, K.V., Coletti, C.: MRS Bull. 37, 1177–1186 (2012). doi:10.1557/mrs.2012.272

  42. Convertino, D., A. Rossi., V. Miseikis, V., Piazza, C., Coletti., Thermal decomposition and chemical vapor deposition: a comparative study of multi-layer growth of graphene on SiC(000-1). MRS Advances 1 (55), 3667–3672 (2016)

    Google Scholar 

  43. Shivaraman, S., Chandrashekhar, M.V.S., Boeckl, J.J., Spencer, M.G.J.: Electron. Mater. 38, 725–730 (2009). doi:10.1007/s11664-009-0803-6

  44. Candini, A., Richter, N., Convertino, D., Coletti, C., Balestro, F., Wernsdorfer, W., Kläui, M., Affronte, M.: Beilstein J. Nanotechnol. 6, 711–719 (2015). doi:10.3762/bjnano.6.72

  45. Prins, F., Hayashi, T., van Steenwijk, B.J.A.D., Gao, B., Osorio, E.A., Muraki, K., van der Zant, H.S.J.: Appl. Phys. Lett. 94, 123108 (2009). doi:10.1063/1.3109784

  46. Moser, J., Barreiro, A., Bachtold A.: Appl. Phys. Lett. 91, 163513 (2007). doi:10.1063/1.2789673

  47. Zhu, P., Lu, F., Pan, N., Arnold, D. P., Zhang, S., Jiang, J., Eur. J. Inorg. Chem. 2004, 510–517 (2004). doi:10.1002/ejic.200300509

  48. Ishikawa, N., Sugita, M., Okubo, T., Tanaka, N., Iino, T., Kaizu, Y., Inorg. Chem. 42, 2440–2446 (2003). doi:10.1021/ic026295u

  49. Abragam, A., Bleaney, B.: Electron Paramagnetic Resonance of Transition Ions (Oxford Classic Texts in the Physical Sciences). Oxford University Press, New York (2012). ISBN 978-0-19-965152-8

    Google Scholar 

  50. Ishikawa, N., Sugita, M., Wernsdorfer, W.: Angew. Chem. Int. Ed. 44(19), 2931–2935 (2005). doi:10.1002/anie.200462638

  51. Stevens, K. W. H.: Proc. Phys. Soc. A 65, 209–215 (1952). doi:10.1088/0370-1298/65/3/308

  52. Koike, N., Uekusa, H., Ohashi, Y., Harnoode, C., Kitamura, F., Ohsaka, T., Tokuda, K.: Inorg. Chem. 35(20), 5798–5804 (1996). doi:10.1021/ic960158d

  53. Landau, L.D.: Phys. Sov. Union 2, 46–51 (1932)

    Google Scholar 

  54. Zener, C.: Proc. R. Soc. Lond. A 137, 696–702 (1932). doi:10.1098/rspa.1932.0165

  55. Stepanow, S., Honolka, J., Gambardella, P., Vitali, L., Abdurakhmanova, N., Tseng, T.-C., Rauschenbach, S., Tait, S.L., Sessi, V., Klyatskaya, S., Ruben, M., Kern, K.: J. Am. Chem. Soc. 132(34), 11900–11901 (2010). doi:10.1021/ja105124r

  56. Sorace, L., Benelli, C., Gatteschi, D.: Chem. Soc. Rev. 40, 3092–3104 (2011). doi:10.1039/C0CS00185F

  57. Gopakumar, T.G., Muller, F., Hietschold, M.: J. Phys. Chem. B 110, 6051–6065 (2006). doi:10.1021/jp060936f

  58. Klar, D., Candini, A., Joly, L., Klyastkaya, S., Krumme, B., Ohresser, P., Kappler, J.-P., Ruben, M., Wende, H.: Dalton Trans. 43, 10686–10689 (2014)

    Google Scholar 

  59. Candini, A., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Affronte, M.: Nano Lett. 11, 2634–2639 (2011). doi:10.1021/nl2006142

  60. Scott, D.G., Natelson, D.: ACS Nano 4(7), 3560–3579 (2010). doi:10.1021/nn100793s

  61. Vitali, L., Fabris, S., Conte, A.M., Brink, S., Ruben, M., Baroni, S., Kern, K., Nano Lett. 8, 3364–3368 (2008). doi:10.1021/nl801869b

Download references

Acknowledgements

This work has been partially supported by European Community through the FET-Proactive Project “MoQuaS,” contract N.610449; by the Italian Ministry for Research (MIUR) through the FIR grant RBFR13YKWX; and by the French Agency for Research through the ANR-12-JS10-007 SINUSManip, ANR-13-BS10-0001MolQuSpin projects and the Alexander von Humboldt foundation. We thank E. Bonet (Institut Néel, Grenoble, France) for help in software development, C. Coletti (IIT Pisa, Italy) for providing the graphene substrates and P. Pingue and F. Carillo (Scuola Normale Superiore di Pisa, Italy) for assistance in sample fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Affronte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Candini, A. et al. (2017). Addressing a Single Molecular Spin with Graphene-Based Nanoarchitectures. In: Ogawa, T. (eds) Molecular Architectonics. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-57096-9_8

Download citation

Publish with us

Policies and ethics