Skip to main content

Sodium-Ion Secondary Batteries Using Ionic Liquids as Electrolytes

  • Chapter
  • First Online:
Electrochemical Science for a Sustainable Society
  • 1121 Accesses

Abstract

Inorganic ionic liquids such as Na[FSA]-K[FSA] and inorganic–organic hybrid ionic liquids such as Na[FSA]-[C3C1pyrr][FSA] (C3C1pyrr =N-propyl-N-methylpyrrolidinium, FSA = bis(fluorosulfonyl)amide) and Na[FSA]-[C2C1im][FSA] (C2C1im = 1-ethyl-3-methylimidazolium) were investigated as potential electrolytes for sodium secondary batteries operating in the temperature range of 253–363 K. The cyclic voltammetry revealed that the electrochemical windows of more than 5 V at 363 K, and electrochemical deposition/dissolution of sodium metal reversibly occurs at the cathode limit potential. Considering their non-volatility, non-flammability and inexpensiveness, these salt mixtures are highly promising as a new class of electrolytes for sodium secondary batteries. The full cell tests employing NaCrO2 and hard carbon as positive and negative electrode materials, respectively, revealed the high performance of the ionic liquid electrolytes for sodium secondary batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  2. Bockris JOM, Reddy AKN (1970) Modern electrohemistry. Plenum Publishing Corporation, New York

    Book  Google Scholar 

  3. Pan HL, Hu YS, Chen LQ (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360

    Article  CAS  Google Scholar 

  4. Yabuuchi N, Kubota K, Dahbi M et al (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  Google Scholar 

  5. Kubota K, Nohira T, Goto T et al (2008) Novel inorganic ionic liquids possessing low melting temperatures and wide electrochemical windows: binary mixtures of alkali bis(fluorosulfonyl)amides. Electrochem Commun 10:1886–1888

    Article  CAS  Google Scholar 

  6. Kubota K, Nohira T, Goto T et al (2009) Binary and ternary mixtures of MFSA (M = Li, K, Cs) as new inorganic ionic liquids. ECS Trans 16:91–98

    Article  CAS  Google Scholar 

  7. Kubota K, Nohira T, Hagiwara R (2010) Thermal properties of alkali bis(fluorosulfonyl)amides and their binary mixtures. J Chem Eng Data 55:3142–3146

    Article  CAS  Google Scholar 

  8. Hagiwara R, Tamaki K, Kubota K et al (2008) Thermal properties of mixed alkali bis(trifluoromethylsulfonyl)amides. J Chem Eng Data 53:355–358

    Article  CAS  Google Scholar 

  9. Kubota K, Nohira T, Goto T et al (2008) Ternary phase diagrams of alkali bis(trifluoromethylsulfonyl)amides. J Chem Eng Data 53:2144–2147

    Article  CAS  Google Scholar 

  10. Kubota K, Tamaki K, Nohira T et al (2010) Electrochemical properties of alkali bis(trifluoromethylsulfonyl)amides and their eutectic mixtures. Electrochim Acta 55:1113–1119

    Article  CAS  Google Scholar 

  11. Fukunaga A, Nohira T, Kozawa Y et al (2012) Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries. J Power Sources 209:52–56

    Article  CAS  Google Scholar 

  12. Ding CS, Nohira T, Hagiwara R et al (2014) Na[FSA]-[C3C1pyrr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of na ion concentration and operation temperature. J Power Sources 269:124–128

    Article  CAS  Google Scholar 

  13. Matsumoto K, Okamoto Y, Nohira T et al (2015) Thermal and transport properties of Na[N(SO2F)2]-[N-methyl-N-propylpyrrolidinium][N(SO2F)2] ionic liquids for Na secondary batteries. J Phys Chem C 119:7648–7655

    Google Scholar 

  14. Matsumoto K, Hosokawa T, Nohira T et al (2014) The Na[FSA]-[C2C1im][FSA] (C2C1im+:1-ethyl-3-methylimidazolium and FSA-:Bis(fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries. J Power Sources 265:36–39

    Article  CAS  Google Scholar 

  15. Matsumoto K, Taniki R, Nohira T et al (2015) Inorganic-organic hybrid ionic liquid electrolytes for Na secondary batteries. J Electrochem Soc 162:A1409–A1414

    Article  CAS  Google Scholar 

  16. Monti D, Jonsson E, Palacin MR et al (2014) Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity. J Power Sources 245:630–636

    Article  CAS  Google Scholar 

  17. Vogel H (1921) The temperature dependence law of the viscosity of fluids. Phys Z 22:645–646

    CAS  Google Scholar 

  18. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. II. J Am Ceram Soc 8:789–794

    Article  CAS  Google Scholar 

  19. Ding CS, Nohira T, Kuroda K et al (2013) NaFSA-C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range. J Power Sources 238:296–300

    Article  CAS  Google Scholar 

  20. Watarai A, Kubota K, Yamagata M et al (2008) A rechargeable lithium metal battery operating at intermediate temperatures using molten alkali bis(trifluoromethylsulfonyl)amide mixture as an electrolyte. J Power Sources 183:724–729

    Article  CAS  Google Scholar 

  21. Yamamoto T, Nohira T, Hagiwara R et al (2012) Charge-discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl) amide-potassium bis(fluorosulfonyl)amide. J Power Sources 217:479–484

    Article  CAS  Google Scholar 

  22. Yamamoto T, Nohira T, Hagiwara R et al (2013) Thermodynamic studies on Sn-Na alloy in an intermediate temperature ionic liquid NaFSA-KFSA at 363 K. J Power Sources 237:98–103

    Google Scholar 

  23. Yamamoto T, Nohira T, Hagiwara R et al (2014) Improved cyclability of Sn-Cu film electrode for sodium secondary battery using inorganic ionic liquid electrolyte. Electrochim Acta 135:60–67

    Article  CAS  Google Scholar 

  24. Chen CY, Matsumoto K, Nohira T et al (2013) Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA-KFSA. J Power Sources 237:52–57

    Article  CAS  Google Scholar 

  25. Chen CY, Matsumoto K, Nohira T et al (2014) Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid. J Power Sources 246:783–787

    Article  CAS  Google Scholar 

  26. Fukunaga A, Nohira T, Hagiwara R et al (2014) A safe and high-rate negative electrode for sodium-ion batteries: hard carbon in NaFSA-C1C3pyrFSA ionic liquid at 363 K. J Power Sources 246:387–391

    Article  CAS  Google Scholar 

  27. Chen CY, Matsumoto K, Nohira T et al (2014) Charge-discharge behavior of a Na2FeP2O7 positive electrode in an ionic liquid electrolyte between 253 and 363 K. Electrochim Acta 133:583–588

    Article  CAS  Google Scholar 

  28. Chen CY, Matsumoto K, Nohira T et al (2014) Na2MnSiO4 as a positive electrode material for sodium secondary batteries using an ionic liquid electrolyte. Electrochem Commun 45:63–66

    Article  CAS  Google Scholar 

  29. Komaba S, Murata W, Ishikawa T et al (2011) Electrochemical na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867

    Article  CAS  Google Scholar 

  30. Fukunaga A, Nohira T, Hagiwara R et al (2016) Performance validation of sodium-ion batteries using an ionic liquid electrolyte. J Appl Electrochem 46:487–496

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (JST) and the Japanese Ministry of Education Culture, Sports, Science, and Technology (MEXT) program “Elements Strategy Initiative for Form Core Research Center.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rika Hagiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hagiwara, R. (2017). Sodium-Ion Secondary Batteries Using Ionic Liquids as Electrolytes. In: Uosaki, K. (eds) Electrochemical Science for a Sustainable Society. Springer, Cham. https://doi.org/10.1007/978-3-319-57310-6_8

Download citation

Publish with us

Policies and ethics