Skip to main content

Balanced numerical schemes for SDEs with non-Lipschitz coefficients

  • Chapter
  • First Online:
Numerical Methods for Stochastic Partial Differential Equations with White Noise

Part of the book series: Applied Mathematical Sciences ((AMS,volume 196))

  • 3111 Accesses

Abstract

In this chapter, we discuss numerical methods for SDEs with coefficients of polynomial growth. The nonlinear growth of the coefficients induces instabilities, especially when the nonlinear growth is polynomial or even exponential. For stochastic differential equations (SDEs) with coefficients of polynomial growth at infinity and satisfying a one-sided Lipschitz condition, we prove a fundamental mean-square convergence theorem on the strong convergence order of a stable numerical scheme in Chapter 5.2. We apply the theorem to a number of existing numerical schemes. We present in Chapter 5.3 a special balanced scheme, which is explicit and of half-order mean-square convergence. Some numerical results are presented in Chapter 5.4. We summarize the chapter in Chapter 5.5 and present some bibliographic notes on numerical schemes for nonlinear SODEs. Three exercises are presented for interested readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As Brownian motion can take values in \(\mathbb{R}\), the (numerical) solution may reach any value at a certain time step. We can assume that we compute the solutions from such a step and denote it as the zeroth step.

  2. 2.

    Assuming additional smoothness of a(t, x), we can get an estimate for \(\mathbb{E}\tilde{\rho }(t,x)\) of order h 2 but this will not improve the result of this lemma for the balanced Euler scheme (5.3.1).

  3. 3.

    However, (5.4.1) is not applicable when diffusion grows faster than a linear function.

References

  1. N. Bou-Rabee, E. Vanden-Eijnden, A patch that imparts unconditional stability to explicit integrators for Langevin-like equations. J. Comput. Phys. 231, 2565–2580 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Gyöngy, A note on Euler’s approximations. Potential Anal. 8, 205–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. R.Z. Has′minskiĭ, Stochastic Stability of Differential Equations (Sijthoff & Noordhoff, Alphen, 1980)

    Google Scholar 

  4. D.J. Higham, X. Mao, A.M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 1041–1063 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. D.J. Higham, X. Mao, L. Szpruch, Convergence, non-negativity and stability of a new Milstein scheme with applications to finance. Discrete Contin. Dyn. Syst. Ser. B 18, 2083–2100 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Hu, Semi-implicit Euler-Maruyama scheme for stiff stochastic equations, in Stochastic Analysis and Related Topics (Birkhäuser, Boston, MA, 1996), pp. 183–202

    MATH  Google Scholar 

  7. M. Hutzenthaler, A. Jentzen, On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients. ArXiv (2014). https://arxiv.org/abs/1401.0295

  8. M. Hutzenthaler, A. Jentzen, Numerical approximation of stochastic differential equations with non-globally Lipschitz continuous coefficients. Mem. Am. Math. Soc. 236, 1 (2015)

    MathSciNet  MATH  Google Scholar 

  9. M. Hutzenthaler, A. Jentzen, P.E. Kloeden, Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. A 467, 1563–1576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Hutzenthaler, A. Jentzen, P.E. Kloeden, Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22, 1611–1641 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Hutzenthaler, A. Jentzen, P.E. Kloeden, Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations. Ann. Appl. Probab. 23, 1913–1966 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Hutzenthaler, A. Jentzen, X. Wang, Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations. Math. Comp. (2017). https://doi.org/10.1090/mcom/3146

    Google Scholar 

  13. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  14. X. Mao, L. Szpruch, Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 238, 14–28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. X. Mao, L. Szpruch, Strong convergence rates for backward Euler-Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stochastics 85, 144–171 (2013)

    MathSciNet  MATH  Google Scholar 

  16. J.C. Mattingly, A.M. Stuart, D.J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101, 185–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. G.N. Mil′shteĭn, A theorem on the order of convergence of mean-square approximations of solutions of systems of stochastic differential equations. Teor. Veroyatnost. i Primenen. 32, 809–811 (1987)

    Google Scholar 

  18. G.N. Milstein, Numerical Integration of Stochastic Differential Equations (Kluwer Academic Publishers Group, Dordrecht, 1995)

    Book  MATH  Google Scholar 

  19. G.N. Milstein, E. Platen, H. Schurz, Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 35, 1010–1019 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. G.N. Milstein, Y.M. Repin, M.V. Tretyakov, Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal. 40, 1583–1604 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. G.N. Milstein, M.V. Tretyakov, Stochastic Numerics for Mathematical Physics (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  22. G.N. Milstein, M.V. Tretyakov, Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients. SIAM J. Numer. Anal. 43, 1139–1154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. G.N. Milstein, M.V. Tretyakov, Computing ergodic limits for Langevin equations. Phys. D 229, 81–95 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. G.N. Milstein, M.V. Tretyakov, Solving parabolic stochastic partial differential equations via averaging over characteristics. Math. Comp. 78, 2075–2106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Neuenkirch, L. Szpruch, First order strong approximations of scalar SDEs defined in a domain. Numer. Math. 128, 103–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Sabanis, Euler approximations with varying coefficients: the case of superlinearly growing diffusion coefficients. Ann. Appl. Probab. 26, 2083–2105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Sabanis, A note on tamed Euler approximations. Electron. Commun. Probab. 18, 1–10 (2013), no. 47

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Szpruch, V-stable tamed Euler schemes. ArXiv (2013). https://arxiv.org/abs/1310.0785

  29. D. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Process. Relat. Fields 8, 163–198 (2002)

    MathSciNet  MATH  Google Scholar 

  30. M.V. Tretyakov, Z. Zhang, A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51, 3135–3162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. X. Wang, S. Gan, The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Differ. Equ. Appl. 19, 466–490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Z. Zhang, H. Ma, Order-preserving strong schemes for SDEs with locally lipschitz coefficients. Appl. Numer. Math. 112, 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. X. Zong, F. Wu, C. Huang, Convergence and stability of the semi-tamed Euler scheme for stochastic differential equations with non-Lipschitz continuous coefficients. Appl. Math. Comput. 228, 240–250 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, Z., Karniadakis, G.E. (2017). Balanced numerical schemes for SDEs with non-Lipschitz coefficients. In: Numerical Methods for Stochastic Partial Differential Equations with White Noise. Applied Mathematical Sciences, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-319-57511-7_5

Download citation

Publish with us

Policies and ethics