Skip to main content

The Geometric Meaning of Curvature: Local and Nonlocal Aspects of Ricci Curvature

  • Chapter
  • First Online:
Modern Approaches to Discrete Curvature

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2184))

Abstract

Curvature is a concept originally developed in differential and Riemannian geometry. There are various established notions of curvature, in particular sectional and Ricci curvature. An important theme in Riemannian geometry has been to explore the geometric and topological consequences of bounds on those curvatures, like divergence or convergence of geodesics, convexity properties of distance functions, growth of the volume of distance balls, transportation distance between such balls, vanishing theorems for Betti numbers, bounds for the eigenvalues of the Laplace operator or control of harmonic functions. Several of these geometric properties turn out to be equivalent to the corresponding curvature bounds in the context of Riemannian geometry. Since those properties often are also meaningful in the more general framework of metric geometry, in recent years, there have been several research projects that turned those properties into axiomatic definitions of curvature bounds in metric geometry. In this contribution, after developing the Riemannian geometric background, we explore some of these axiomatic approaches. In particular, we shall describe the insights in graph theory and network analysis following from the corresponding axiomatic curvature definitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The indices k and l appear in different orders on the two sides of (1.46), according to the convention of Jost [47] that made an attempt to mediate between the different conventions in use in Riemannian geometry.

  2. 2.

    The Borel sigma algebra is the set of all subsets of X that are obtained from the open balls by taking complements, finite intersections and countable unions. For the sets in the Borel sigma, one can then define their volumes w.r.t. to a Radon probability measure. The technical details are not so important for understanding the essence of the subsequent constructions.

References

  1. Ache, A., Warren, M.: Coarse Ricci curvature as a function on M × M (2015). arXiv preprint 1505.04461v1

    Google Scholar 

  2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Bakry, D.: Functional inequalities for Markov semigroups. In: Probability Measures on Groups: Recent Directions and Trends, pp. 91–147. Tata Institute of Fundamental Research, Mumbai (2006)

    Google Scholar 

  4. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985). http://dx.doi.org/10.1007/BFb0075847

  5. Bakry, D., Ledoux, M.: Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85(1), 253–270 (1996). doi:10.1215/S0012-7094-96-08511-7. http://dx.doi.org/10.1215/S0012-7094-96-08511-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Bakry, D., Ledoux, M.: A logarithmic Sobolev form of the Li-Yau parabolic inequality. Rev. Mat. Iberoamericana 22, 683–702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bakry, D., Qian, Z.: Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv. Math. 155(1), 98–153 (2000). doi:http://dx.doi.org/10.1006/aima.2000.1932

  8. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  9. Bartholdi, L., Schick, T., Smale, N., Smale, S.: Hodge theory on metric spaces. Found. Comput. Math. 12, 1–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauer, F.: Normalized graph Laplacians for directed graphs. Linear Algebra Appl. 436, 4193–4222 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bauer, F., Jost, J.: Bipartite and neighborhood graphs and the spectrum of the normalized graph Laplacian. Commun. Anal. Geom. 21, 787–845 (2013)

    Article  MATH  Google Scholar 

  12. Bauer, F., Atay, F., Jost, J.: Synchronization in discrete-time networks with general pairwise coupling. Nonlinearity 22, 2333–2351 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bauer, F., Atay, F., Jost, J.: Synchronized chaos in networks of simple units. Europhys. Lett. 89, 20002–p1–p6 (2010)

    Google Scholar 

  14. Bauer, F., Jost, J., Liu, S.: Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator. Math. Res. Lett. 19, 1185–1205 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.: Li-Yau inequality on graphs. J. Differ. Geom. 99, 359–405 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bauer, F., Hua, B., Yau, S.T.: Davies-Gaffney-Grigor’yan lemma on graphs. Commun. Anal. Geom. 23, 1031–1068 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bačak, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter, Berlin (2014)

    MATH  Google Scholar 

  18. Bačak, M., Hua, B., Jost, J., Kell, M.: (in preparation)

    Google Scholar 

  19. Bačák, M., Hua, B., Jost, J., Kell, M., Schikorra, A.: A notion of nonpositive curvature for general metric spaces. Differ. Geom. Appl. 38, 22–32 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Berestovskij, V., Nikolaev, I.: Multidimensional generalized Riemannian spaces. In: Reshetnyak, Y.G. (ed.) Geometry IV. Encyclopedia of Mathematical Sciences, vol. 70, pp. 165–243. Springer, Berlin (1993)

    Google Scholar 

  21. Bhattacharya, B., Mukherjee, S.: Exact and asymptotic results on coarse Ricci curvature of graphs. Discret. Math. 338(1), 23–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bonciocat, A.I., Sturm, K.T.: Mass transportation and rough curvature bounds for discrete spaces. J. Funct. Anal. 256(9), 2944–2966 (2009). doi:10.1016/j.jfa.2009.01.029. http://dx.doi.org/10.1016/j.jfa.2009.01.029

    Article  MathSciNet  MATH  Google Scholar 

  23. Bubley, R., Dyer, M.E.: Path coupling: a technique for proving rapid mixing in Markov chains. In: 38th Annual Symposium on Foundations of Computer Science (FOCS ’97), pp. 223–231 (1997)

    Google Scholar 

  24. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, vol. 33. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  25. Chan, T., Shen, J.: Image Processing and Analysis. Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia, PA (2005)

    Book  MATH  Google Scholar 

  26. Chung, F.: Spectral Graph Theory. American Mathematical Society, Providence, RI (1997)

    MATH  Google Scholar 

  27. DeVos, M., Mohar, B.: An analogue of the Descartes-Euler formula for infinite graphs and Higuchi’s conjecture. Trans. Am. Math. Soc. 359(7), 3287–3300 (electronic) (2007). doi:http://dx.doi.org/10.1090/S0002-9947-07-04125-6

  28. Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15, 458–486 (1970)

    Article  MATH  Google Scholar 

  29. Eckmann, B.: Harmonische Funktionen und Randwertaufgaben in einem Komplex. Comment. Math. Helv. 17(1), 240–255 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eschenburg, J., Jost, J.: Differentialgeometrie und Minimalflächen. Springer, Berlin (2013)

    MATH  Google Scholar 

  31. Evans, L.: Partial differential equations and Monge-Kantorovich mass transfer. Curr. Dev. Math. 1997, 65–126 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Forman, R.: Bochner’s method for cell complexes and combinatorial Ricci curvature. Discret. Comput. Geom. 29(3), 323–374 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Funano, K.: Eigenvalues of Laplacian and multi-way isoperimetric constants on weighted Riemannian manifolds (2013). http://arxiv.org/abs/1307.3919

    Google Scholar 

  34. Funano, K., Shioya, T.: Concentration, Ricci curvature, and eigenvalues of Laplacian. Geom. Funct. Anal. 23(3), 888–936 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Garland, H.: p-adic curvature and the cohomology of discrete subgroups of p-adic groups. Ann. Math. 97, 375–423 (1973)

    Google Scholar 

  36. Gauss, C.: Disquisitiones generales circa superficies curvas. In: Dombrowski, P. (ed.) 150 years after Gauss’ “Disquisitiones generales circa superficies curvas”. Société Mathématique de France, Paris (1979)

    Google Scholar 

  37. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Grigoryan, A.: Analysis on graphs. Technical Report, University of Bielefeld (2009). https://www.math.uni-bielefeld.de/~grigor/aglect.pdf

    Google Scholar 

  39. Horak, D., Jost, J.: Spectra of combinatorial laplace operators on simplicial complexes. Adv. Math. 244, 303–336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hua, B., Jost, J., Liu, S.: Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature. J. Reine Angew. Math. 700, 1–36 (2015). http://dx.doi.org/10.1515/crelle-2013-0015

    Article  MathSciNet  MATH  Google Scholar 

  41. Jin, Y., Jost, J., Wang, G.: A nonlocal version of the Osher-Sole-Vese model. J. Math. Imaging Vision 44(2), 99–113 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jin, Y., Jost, J., Wang, G.: A new nonlocal H 1 model for image denoising. J. Math. Imaging Vision 48(1), 93–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jin, Y., Jost, J., Wang, G.: A new nonlocal variational setting for image processing. Inverse Prob. Imaging 9, 415–430 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jost, J.: Equilibrium maps between metric spaces. Calc. Var. 2, 173–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jost, J.: Generalized harmonic maps between metric spaces. In: Jost, J. (ed.) Geometric Analysis and the Calculus of Variations for Stefan Hildebrandt, pp. 143–174. International Press, Boston (1996)

    Google Scholar 

  46. Jost, J.: Nonpositive Curvature: Geometric and Analytic Aspects. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  47. Jost, J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  48. Jost, J.: Mathematical Methods in Biology and Neurobiology. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  49. Jost, J.: Mathematical Concepts. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  50. Jost, J., Liu, S.: Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs. Discrete Comput. Geom. 51, 300–322 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Jost, J., Yau, S.: Harmonic maps and superrigidity. Proc. Symp. Pure Math. 54(I), 245–280 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kimmel, R., Malladi, R., Sochen, N.: Images as embedding maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000)

    Article  MATH  Google Scholar 

  53. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kwok, T.C., Lau, L.C., Lee, Y.T., Oveis Gharan, S., Trevisan, L.: Improved Cheeger’s inequality: analysis of spectral partitioning algorithms through higher order spectral gap. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pp. 11–20. ACM, New York (2013). doi:http://doi.acm.org/10.1145/2488608.2488611

  55. Lee, J.R., Oveis Gharan, S., Trevisan, L.: Multi-way spectral partitioning and higher-order Cheeger inequalities. In: STOC’12—Proceedings of the 2012 ACM Symposium on Theory of Computing, pp. 1117–1130. ACM, New York (2012). http://dx.doi.org/10.1145/2213977.2214078

  56. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence, RI (2009). With a chapter by James G. Propp and David B. Wilson

    Google Scholar 

  57. Li, P.: Geometric Analysis. Cambridge Studies in Advanced Mathematics, vol. 134. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  58. Li, P., Yau, S.T.: On the parabolic kernel of the Schrdinger operator. Acta Math. 156(1), 153–201 (1986). doi:10.1007/BF02399203. http://dx.doi.org/10.1007/BF02399203

    Article  MathSciNet  Google Scholar 

  59. Lin, Y., Yau, S.T.: Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17, 343–356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Liu, S.: An optimal dimension-free upper bound for eigenvalue ratios (2014). http://arxiv.org/abs/1405.2213

    Google Scholar 

  61. Liu, S., Peyerimhoff, N.: Eigenvalue ratios of nonnegatively curved graphs (2014). http://arxiv.org/abs/1406.6617

    Google Scholar 

  62. Lohkamp, J.: Metrics of negative Ricci curvature. Ann. Math. 140, 655–683 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  63. Loisel, B., Romon, P.: Ricci curvature on polyhedral surfaces via optimal transportation. Axioms 3(1), 119–139 (2014). https://hal.archives-ouvertes.fr/hal-00941486v2

    Article  MATH  Google Scholar 

  64. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009). doi:10.4007/annals.2009.169.903. http://dx.doi.org/10.4007/annals.2009.169.903

  65. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. American Mathematical Society, Providence, RI (2001)

    Book  MATH  Google Scholar 

  66. Miclo, L.: On eigenfunctions of Markov processes on trees. Probab. Theory Relat. Fields 142, 561–594 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. Münch, F.: Li-Yau inequality on finite graphs via non-linear curvature dimension conditions (2014). arXiv:1412.3340

    Google Scholar 

  68. Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ohta, S.I.: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82, 805–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009). doi:http://dx.doi.org/10.1016/j.jfa.2008.11.001

  71. Ollivier, Y.: A survey of Ricci curvature for metric spaces and Markov chains. In: Kotani, M., Hino, M., Kumagai, T. (eds.) Probabilistic Approach to Geometry. Advanced Studies in Pure Mathematics, vol. 57, pp. 343–381. Mathematical Society of Japan, Tokyo (2010)

    Google Scholar 

  72. Peres, Y.: Mixing for Markov chains and spin systems. Lecture Notes (2005). http://www.stat.berkeley.edu/~peres/ubc.pdf

  73. Qian, B.: Remarks on Li-Yau inequality on graphs (2013). arXiv:1311.3367

    Google Scholar 

  74. Riemann, B.: Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. Springer, Berlin (2013). Edited with a commentary by J. Jost

    Google Scholar 

  75. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  76. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer, Berlin (2009)

    MATH  Google Scholar 

  77. Schmuckenschläger, M.: Curvature of Nonlocal Markov Generators. Convex Geometric Analysis, vol. 34, pp. 189–197. MSRI Publications, Berkeley, CA (1998)

    Google Scholar 

  78. Sreejith, R., Jost, J., Saucan, E., Samal, A.: Forman curvature for directed networks (2016). arXiv preprint arXiv:1605.04662

    Google Scholar 

  79. Sreejith, R., Mohanraj, K., Jost, J., Saucan, E., Samal, A.: Forman curvature for complex networks. J. Stat. Mech: Theory Exp. 2016(6), 063206 (2016)

    Article  MathSciNet  Google Scholar 

  80. Sreejith, R., Jost, J., Saucan, E., Samal, A.: Systematic evaluation of a new combinatorial curvature for complex networks (2016). arXiv preprint arXiv:1610.01507

    Google Scholar 

  81. Sturm, K.T.: On the geometry of metric measure spaces. I and II. Acta Math. 196(1), 65–177 (2006). doi:10.1007/s11511-006-0003-7. http://dx.doi.org/10.1007/s11511-006-0003-7

    MathSciNet  MATH  Google Scholar 

  82. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  83. Villani, C.: Optimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009). doi:10.1007/978-3-540-71050-9. http://dx.doi.org/10.1007/978-3-540-71050-9

  84. Wald, A.: Begründung einer koordinatenlosen Differentialgeometrie der Flächen. Ergebnisse eines Math. Kolloquiums, 1. Reihe 7, 24–46 (1936)

    Google Scholar 

  85. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  86. Weber, M., Saucan, E., Jost, J.: Can one see the shape of a network? (2016). arXiv preprint arXiv:1608.07838

    Google Scholar 

  87. Weber, M., Saucan, E., Jost, J.: Characterizing complex networks with Forman-Ricci curvature and associated geometric flows. arXiv preprint arXiv:1607.08654 (2016)

    Google Scholar 

  88. Weber, M., Jost, J., Saucan, E.: Forman-Ricci flow for change detection in large dynamic data sets. Axioms 5(4), 26 (2016)

    Article  Google Scholar 

  89. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  90. Zhang, H., Zhu, X.: Lipschitz continuity of harmonic maps between Alexandrov spaces (2013). arXiv:1311.1331

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Advanced Investigator Grant Agreement no. 267087. Frank Bauer was partially supported by the Alexander von Humboldt foundation and partially supported by the NSF Grant DMS-0804454 Differential Equations in Geometry. Shiping Liu was partially supported by the EPSRC Grant EP/K016687/1 Topology, Geometry and Laplacians of Simplicial Complexes. Bobo Hua was supported by the NSFC 11401106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Jost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Bauer, F., Hua, B., Jost, J., Liu, S., Wang, G. (2017). The Geometric Meaning of Curvature: Local and Nonlocal Aspects of Ricci Curvature. In: Najman, L., Romon, P. (eds) Modern Approaches to Discrete Curvature. Lecture Notes in Mathematics, vol 2184. Springer, Cham. https://doi.org/10.1007/978-3-319-58002-9_1

Download citation

Publish with us

Policies and ethics