Skip to main content

Metric Curvatures Revisited: A Brief Overview

  • Chapter
  • First Online:
Modern Approaches to Discrete Curvature

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2184))

Abstract

We survey metric curvatures, special accent being placed upon the Wald curvature, its relationship with Alexandrov curvature, as well as its application in defining a metric Ricci curvature for PL cell complexes and a metric Ricci flow for PL surfaces. In addition, a simple, metric way of defining curvature for metric measure spaces is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As the reader will become aware while progressing with this text, we have written previously a book chapters on metric curvatures as well as a largely expository article. However the present paper does not represent a calque of any of these previous ones. For one, the present one is addressed to a much more mathematically literate (not to say “very well educated”) audience than the previous expositions. To be sure, certain repetitions are, unfortunately, unavoidable: After all, the same subject represents the common theme of all these three papers. However, we have strived to keep these at an inevitable minimum. Moreover, we did our best to emphasize different aspects (in general, more modern ones) as well as introducing some novel applications.

  2. 2.

    We know that in mentioning this here we anticipate, somewhat, the reminder of the paper.

  3. 3.

    Although, when these notes were started, the mentioned work was still not published.

  4. 4.

    Named after Haantjes [40], who extended to metric spaces an idea introduced by Finsler in his PhD Thesis.

  5. 5.

    Since it proves us that, indeed, for smooth curves, Haantjes curvature coincides with the classical notion of curvature.

  6. 6.

    Not necessarily geodesic.

  7. 7.

    In any case, it is not truly required and, in fact, even cumbersome in practical applications (see [4, 91] for two such examples).

  8. 8.

    The literature on the subject being too vast to even begin and enumerate it here.

  9. 9.

    As a historical note, it is perhaps worthwhile to recall that Formula (2.14) above was proved by Cayley in his very first mathematical paper [21] (published while he was still begrudgingly making his living as a lawyer!…).

  10. 10.

    Recall that the link lk(v) of a vertex v is the set of all the faces of \(\overline{\mathrm{St}}(v)\) that are not incident to v. Here \(\overline{\mathrm{St}}(v)\) denotes the closed star of v, i.e. the smallest subcomplex (of the given simplicial complex K) that contains St(v), namely \(\overline{\mathrm{St}}(v) =\{\sigma \in \mathrm{ St}(v)\} \cup \{\theta \,\vert \,\theta \leqslant \sigma \}\), where St(v) denotes the star of v, that is the set of all simplices that have v as a face, i.e \(\mathrm{St}(v) =\{\sigma \in K\,\vert \,v\leqslant \sigma \}\).

  11. 11.

    It was, it would appear, Gromov’s observation that, in the geometric setting, the relevant convergence is the Gromov–Hausdorff one.

  12. 12.

    The dimension can be taken as the topological dimension or the Hausdorff dimension—see, e.g. [79].

  13. 13.

    Without getting into the technical subtleties of the definition of the space of directions S p at a point p in a space of bounded curvature, the injectivity radius at p is defined as \(\inf _{\gamma \in S_{p}}\sup _{t}\{\gamma \vert _{[0,t]}\text{is minimal}\}\).

  14. 14.

    This well known “paradox” of the foundations of Geometry is, unfortunately, generally overlooked in certain applications in Imaging and Graphics, which results in a penalty on the quality of the numerical results.

  15. 15.

    Developed avant la lettre.

  16. 16.

    Also, we warn the eventual reader of an unfortunate previously unnoticed typo towards the end of [37].

  17. 17.

    In what would have been probably consider to be a strange—not to say bizarre—development even only a few years ago.

  18. 18.

    Recall that the link Lk(v) of a vertex v is the set of all the faces of \(\overline{\mathrm{St}}(v)\) that are not incident to v. Here \(\overline{\mathrm{St}}(v)\) denotes the closed star of v, i.e. the smallest subcomplex (of the given simplicial complex K) that contains St(v), namely \(\overline{\mathrm{St}}(v) =\{\sigma \in \mathrm{ St}(v)\} \cup \{\theta \,\vert \,\theta \leqslant \sigma \}\), where St(v) denotes the star of v, that is the set of all simplices that have v as a face, i.e \(\mathrm{St}(v) =\{\sigma \in K\,\vert \,v\leqslant \sigma \}\).

  19. 19.

    Note that to apply Richard’s result we have only to consider our surfaces as an Alexandrov surface having curvature bounded from below, condition that is, evidently, satisfied. (In this regard and for a discussion on the definition of Wald/Alexandrov curvature for PL surfaces, see [89, pp. 26–27].

  20. 20.

    For a formal definition and more details see, e.g. [82].

  21. 21.

    Alternatively, this condition may be expressed either as lk(v) “has no missing simplices (Sageev [82]), or as “a nonsimplex contains a non edge” (W. Dicks, see [11]).

  22. 22.

    The author would like to thank the anonymous reviewer for bringing to his attention this paper.

  23. 23.

    Obviously, in the interiors of the faces the metric is already smooth.

  24. 24.

    But not piecewise Euclidean.

  25. 25.

    And, in truth rather trivially, since the result holds, regardless of the specific definition for the curvature of a cell.

  26. 26.

    But, on the other hand, this holds even if n = 3!…

  27. 27.

    Without affecting the analogue of the Bonnet–Myers Theorem—see Sect. 2.2 above.

  28. 28.

    See also [105].

  29. 29.

    When mentioning generalized curvatures for surfaces, one can not fail to mention Morgan’s [60] and his students’ [25] work on “weighted” surfaces and curves.

  30. 30.

    At least, this is the usual convention.

  31. 31.

    However, quasisymmetry represents a much more flexible analytic tool, than the rigid bilipschitz condition—see [42, 96, 97] for a deeper and far more detailed discussion.

References

  1. Abraham, I., Bartal, Y., Neiman, O.: Embedding metric spaces in their intrinsic dimension. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 363–372. Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Google Scholar 

  2. Alexander, S.B., Bishop, R.L.: Comparison theorems for curves of bounded geodesic curvature in metric spaces of curvature bounded above. Differ. Geom. Appl 6, 67–86 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Appleboim, E., Saucan, E., Zeevi, Y.Y.: Ricci curvature and flow for image denoising and superesolution. In: Proceedings of EUSIPCO, pp. 2743–2747 (2012)

    Google Scholar 

  4. Appleboim, E., Hyams, Y., Krakovski, S., Sageev, C., Saucan, E.: The scale-curvature connection and its application to texture segmentation. Theory Appl. Math. Comput. Sci. 3(1), 38–54 (2013)

    MATH  Google Scholar 

  5. Assouad, P.: Étude d’une dimension métrique liée à la possibilité de plongement dans \(\mathbb{R}^{n}\). C. R. Acad. Sci. Paris 288, 731–734 (1979)

    MathSciNet  MATH  Google Scholar 

  6. Assouad, P.: Plongements lipschitziens dans \(\mathbb{R}^{n}\). Bull. Soc. Math. France 111, 429–448 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bačák, M., Hua, B., Jost, J., Kell, M., Schikorra, A.: A notion of nonpositive curvature for general metric spaces. Differ. Geom. Appl. 38, 22–32 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berestovskii, V.: Introduction of a Riemannian structure in certain metric spaces. Siberian Math. J. 16, 210–221 (1977)

    Google Scholar 

  9. Berestovskii, V.: Spaces with bounded curvature and distance geometry. Siberian Math. J 27(1), 8–19 (1986)

    Article  MathSciNet  Google Scholar 

  10. Berger, M.: A Panoramic View of Riemannian Geometry. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  11. Bestvina, M.: Geometric group theory and 3-manifolds hand in hand: the fulfillment of Thurston’s vision. Bull. Am. Math. Soc 51(1), 53–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Claredon Press, Oxford (1953)

    MATH  Google Scholar 

  13. Blumenthal, L., Menger, K.: Studies in Geometry. A Series of Books in Mathematics, vol. XIV, 512 pp. W.H. Freeman and Company, San Francisco (1970)

    Google Scholar 

  14. Bonciocat, A.I., Sturm, K.T.: Mass transportation and rough curvature bounds for discrete spaces. J. Funct. Anal. 256(9), 2944–2966 (2009). doi:10.1016/j.jfa.2009.01.029. http://dx.doi.org/10.1016/j.jfa.2009.01.029

    Article  MathSciNet  MATH  Google Scholar 

  15. Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel J. Math 52(1), 46–52 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brehm, U., Kühnel, W.: Smooth approximation of polyhedral surfaces regarding curvatures. Geom. Dedicata 12, 435–461 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brooks, R.: Differential Geometry (Lecture Notes). Technion, Haifa (2003)

    Google Scholar 

  18. Burago, Y.D., Zalgaller, V.A.: Isometric piecewise linear immersions of two-dimensional manifolds with polyhedral metrics into \(\mathbb{R}^{3}\). St. Petersburg Math. J. 7(3), 369–385 (1996)

    Google Scholar 

  19. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, vol. 33. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  20. Cassorla, M.: Approximating compact inner metric spaces by surfaces. Indiana Univ. Math. 41, 505–513 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cayley, A.: On a theorem in the geometry of position. Camb. Math. J. 2, 267–271 (1841)

    Google Scholar 

  22. Cheeger, J.: Finiteness theorems for Riemannian manifolds. Am. J. Math. 90, 61–74 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chow, B.: The Ricci flow on the 2-sphere. J. Differ. Geom. 33(2), 325–334 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chow, B., Luo, F.: Combinatorial Ricci flows on surfaces. J. Differ. Geom. 63(1), 97–129 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Corwin, I., Hoffman, N., Hurder, S., Šešum, V., Xu, Y.: Differential geometry of manifolds with density. Rose Hulman Undergraduate J. Math. 7(1), 1–15 (2006)

    Google Scholar 

  26. Forman, R.: Bochner’s method for cell complexes and combinatorial Ricci curvature. Discrete Comput. Geom. 29(3), 323–374 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Giesen, J.: Curve reconstruction, the traveling salesman problem and Menger’s theorem on length. In: Proceedings of the 15th ACM Symposium on Computational Geometry (SoCG), pp. 207–216. ACM, New York (1999)

    Google Scholar 

  28. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gilboa, G., Appleboim, E., Saucan, E., Zeevi, Y.Y.: On the role of non-local menger curvature in image processing. In: Proceedings of ICIP 2015, pp. 4337–4341. IEEE (Society) (2015)

    Google Scholar 

  30. Goswami, M., Li, S.M., Zhang, J., Gao, J., Saucan, E., Gu, X.D.: Space filling curves for 3d sensor networks with complex topology. In: Proceedings of CCCG 2015, pp. 21–30 (2015)

    Google Scholar 

  31. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Modern Birkhäuser Classics, 3rd edn. Birkhäuser, Basel (2007)

    Google Scholar 

  32. Gromov, M., Thurston, W.: Pinching constants for hyperbolic manifolds. Invent. math. 86, 1–12 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grove, K., Markvorsen, S.: Curvature, triameter and beyond. Bull. Am. Math. Soc. 27, 261–265 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grove, K., Markvorsen, S.: New extremal problems for the Riemannian recognition program via Alexandrov geometry. J. Am. Math. Soc. 8, 1–28 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Grove, K., Petersen, P.: Bounding homotopy types by geometry. Ann. Math. 128, 195–206 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Grove, K., Petersen, P., Wu, J.Y.: Bounding homotopy types by geometry. Invent. Math. 99(1), 205–213 (1990)

    Article  MathSciNet  Google Scholar 

  37. Gu, X.D., Saucan, E.: Metric ricci curvature for pl manifolds. Geometry 2013(Article ID 694169), 12 pp. doi:10.1155/2013/694169 (2003)

    Google Scholar 

  38. Gu, X.D., Yau, S.T.: Computational Conformal Geometry. International Press, Somerville, MA (2008)

    MATH  Google Scholar 

  39. Haas, J.: Personal communication (2013)

    Google Scholar 

  40. Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. 71, 237–262 (1988)

    Article  MathSciNet  Google Scholar 

  41. Han, Q., Hong, J.X.: Isometric embedding of Riemannian manifolds in Euclidean spaces. AMS Math. Surv. 130, 237–262 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)

    Book  MATH  Google Scholar 

  43. Jin, M., Kim, J., Gu, X.D.: Discrete surface Ricci flow: theory and applications. In: IMA International Conference on Mathematics of Surfaces, pp. 209–232. Springer, Berlin (2007)

    Google Scholar 

  44. Jin, Y., Jost, J., Wang, G.: A nonlocal version of the Osher-Sole-Vese model. J. Math. Imaging Vision 44(2), 99–113 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jin, Y., Jost, J., Wang, G.: A new nonlocal H 1 model for image denoising. J. Math. Imaging Vision 48(1), 93–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jost, J., Liu, S.: Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs. Discrete Comput. Geom. 51, 300–322 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kay, D.C.: Arc curvature in metric spaces. Geom. Dedicata 9(1), 91–105 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Krauthgamer, R., Linial, N., Magen, A.: Metric embeddings – beyond one-dimensional distortion. Discrete Comput. Geom. 31, 339–356 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lebedeva, N., Matveev, V., Petrunin, A., Shevchishin, V.: On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions. J. Approx. Theory 156(1), 52–81 (2009)

    Article  MathSciNet  Google Scholar 

  51. Lebedeva, N., Matveev, V., Petrunin, A., Shevchishin, V.: Smoothing 3-dimensional polyhedral spaces. Electron. Res. Announc. Math. Sci. 22, 12–19 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Lin, Y., Lu, L., Yau, S.T.: Ricci curvature of graphs. Tohoku Math. J. 63(4), 605–627 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lin, S., Luo, Z., Zang, J., Saucan, E.: Generalized Ricci curvature based sampling and reconstruction of images. In: Proceedings of EUSIPCO 2015, pp. 604–608 (2015)

    Google Scholar 

  54. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215–245 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  55. Loisel, B., Romon, P.: Ricci curvature on polyhedral surfaces via optimal transportation. Axioms 3(1), 119–139 (2014). https://hal.archives-ouvertes.fr/hal-00941486v2

    Article  MATH  Google Scholar 

  56. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009). doi:10.4007/annals.2009.169.903. http://dx.doi.org/10.4007/annals.2009.169.903

  57. Luukkainen, J., Saksman, E.: Every complete doubling metric space carries a doubling measure. Proc. Am. Math. Soc. 162(2), 903–991 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Mémoli, F.: On the use of Gromov-Hausdorff distances for shape comparison. In: Proceedings of the Point Based Graphics, Prague (2007)

    Google Scholar 

  59. Mémoli, F.: A spectral notion of Gromov–Wasserstein distance and related methods. Appl. Comput. Harmon. Anal. 30(3), 363–401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  60. Morgan, F.: Manifolds with density. Not. Am. Math. Soc. 52, 853–858 (2001)

    MathSciNet  MATH  Google Scholar 

  61. Munkres, J.R.: Elementary Differential Topology (rev. ed.). Princeton University Press, Princeton, NJ (1966)

    Google Scholar 

  62. Naitsat, A., Saucan, E., Zeevi, Y.Y.: Volumetric quasi-conformal mappings. In: Proceedings of GRAPP/VISIGRAPP 2015, pp. 46–57 (2015)

    Google Scholar 

  63. Naor, A., Neiman, O.: Assouad’s theorem with dimension independent of the snowflaking. Rev. Mat. Iberoam. 28, 1–21 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Nash, J.: \(\mathcal{C}^{1}\) isometric imbeddings. Ann. Math. 60, 383–396 (1954)

    Google Scholar 

  65. Nash, J.: The embedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  66. Nikolaev, I.G.: Parallel translation and smoothness of the metric of spaces of bounded curvature. Math. Dokl. 21, 263–265 (1980)

    MATH  Google Scholar 

  67. Nikolaev, I.G.: Parallel displacement of vectors in spaces of Alexandrov two-side-bounded curvature. Siberian Math. J. 24(1), 106–119 (1983)

    Article  MATH  Google Scholar 

  68. Nikolaev, I.G.: Smoothness of the metric of spaces with bilaterally bounded curvature in the sense of A. Alexandrov. Siberian Math. J. 24, 247–263 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  69. Novikov, S.P.: Topology I: General Survey. Springer, Berlin/Heidelberg (1996)

    Book  Google Scholar 

  70. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009). http://dx.doi.org/10.1016/j.jfa.2008.11.001

    Article  MathSciNet  MATH  Google Scholar 

  71. Otsu, Y.: On manifolds with small excess. Am. J. Math. 115, 1229–1280 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  72. Pajot, H.: Analytic capacity, rectificabilility, menger curvature and the cauchy integral. In: Lecture Notes in Mathematics (LNM) 1799. Springer, Berlin (2002)

    Google Scholar 

  73. Perelman, G.: Alexandrov’s spaces with curvature bounded from below II. Tech. rep., Leningrad Department of the Steklov Institute of Mathematics (LOMI) (1991)

    Google Scholar 

  74. Petersen, P.: Riemannian Geometry. Springer, New York (1998)

    Book  MATH  Google Scholar 

  75. Plaut, C.: Almost Riemannian spaces. J. Differ. Geom. 34, 515–537 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  76. Plaut, C.: A metric characterization of manifolds with boundary. Compos. Math. 81(3), 337–354 (1992)

    MathSciNet  MATH  Google Scholar 

  77. Plaut, C.: Metric curvature, convergence, and topological finiteness. Duke Math. J. 66(1), 43–57 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  78. Plaut, C.: Spaces of Wald-Berestowskii curvature bounded below. J. Geom. Anal. 6(1), 113–134 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  79. Plaut, C.: Metric spaces of curvature ≥ k. In: Daverman, R.J., Sher, R.B. (eds.) Handbook of Geometric Topology, pp. 819–898. Elsevier, Amsterdam (2002)

    Google Scholar 

  80. Richard, T.: Canonical smoothing of compact Alexandrov surfaces via Ricci flow. Tech. rep., Université Paris-Est Créteil (2012). ArXiv:1204.5461

    Google Scholar 

  81. Robinson, C.V.: A simple way of computing the Gauss curvature of a surface. Reports of a Mathematical Colloquium (Second Series) 5–6(1), pp. 16–24 (1944)

    Google Scholar 

  82. Sageev, M.: Cat(0) cube complexes and groups. In: Geometric Group Theory, IAS/Park City Mathematics Series, vol. 21, pp. 7–53. AMS and IAS/PCMI (2014)

    Google Scholar 

  83. Sarkar, R., Yin, X., Gao, J., Luo, F., Gu, X.D.: Greedy routing with guaranteed delivery using Ricci flows. In: Proceedings of IPSN’09, pp. 121–132 (2009)

    Google Scholar 

  84. Sarkar, R., Zeng, W., Gao, J., Gu, X.D.: Covering space for in-network sensor data storage. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 232–243. ACM, New York (2010)

    Google Scholar 

  85. Saucan, E.: Surface triangulation – the metric approach. Tech. rep., Technion (2004). Arxiv:cs.GR/0401023

    Google Scholar 

  86. Saucan, E.: Curvature – smooth, piecewise-linear and metric. In: What is Geometry? pp. 237–268. Polimetrica, Milano (2006)

    Google Scholar 

  87. Saucan, E.: A simple sampling method for metric measure spaces. preprint (2011). ArXiv:1103.3843v1 [cs.IT]

    Google Scholar 

  88. Saucan, E.: On a construction of Burago and Zalgaller. Asian J. Math. 16(5), 587–606 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  89. Saucan, E.: A metric Ricci flow for surfaces and its applications. Geom. Imaging Comput. 1(2), 259–301 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  90. Saucan, E.: Metric curvatures and their applications. Geom. Imaging Comput. 2(4), 257–334 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  91. Saucan, E., Appleboim, E.: Curvature based clustering for dna microarray data analysis. In: Lecture Notes in Computer Science, vol. 3523, pp. 405–412. Springer, New York (2005)

    Google Scholar 

  92. Saucan, E., Appleboim, E.: Metric methods in surface triangulation. In: Lecture Notes in Computer Science, vol. 5654, pp. 335–355. Springer, New York (2009)

    Google Scholar 

  93. Saucan, E., Appleboim, E., Zeevi, Y.: Sampling and reconstruction of surfaces and higher dimensional manifolds. J. Math. Imaging Vision 30(1), 105–123 (2008)

    Article  MathSciNet  Google Scholar 

  94. Saucan, E., Appleboim, E., Zeevi, Y.: Geometric approach to sampling and communication. Sampl. Theory Signal Image Process. 11(1), 1–24 (2012)

    MathSciNet  MATH  Google Scholar 

  95. Semmes, S.: Bilipschitz mappings and strong a weights. Acad. Sci. Fenn. Math. 18, 211–248 (1993)

    MathSciNet  MATH  Google Scholar 

  96. Semmes, S.: Metric spaces and mappings seen at many scales. In: Metric Structures for Riemannian and non-Riemannian Spaces. Progress in Mathematics, vol. 152, pp. 401–518. Birkhauser, Boston (1999)

    Google Scholar 

  97. Semmes, S.: Some Novel Types of Fractal Geometry. Clarendon Press, Oxford (2001)

    MATH  Google Scholar 

  98. Shephard, G.C.: Angle deficiences of convex polytopes. J. Lond. Math. Soc. 43, 325–336 (1968)

    Article  MATH  Google Scholar 

  99. Sonn, E., Saucan, E., Appelboim, E., Zeevi, Y.Y.: Ricci flow for image processing. In: Proceedings of IEEEI 2014. IEEEI (2014)

    Google Scholar 

  100. Stone, D.A.: Sectional curvatures in piecewise linear manifolds. Bull. Am. Math. Soc. 79(5), 1060–1063 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  101. Stone, D.A.: A combinatorial analogue of a theorem of Myers. Ill. J. Math. 20(1), 12–21 (1976)

    MathSciNet  MATH  Google Scholar 

  102. Stone, D.A.: Correction to my paper: “A combinatorial analogue of a theorem of Myers” (Illinois J. Math. 20(1), 12–21 (1976). Illinois J. Math. 20(3), 551–554 (1976)

    Google Scholar 

  103. Stone, D.A.: Geodesics in piecewise linear manifolds. Trans. Am. Math. Soc. 215, 1–44 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  104. Sturm, K.T.: On the geometry of metric measure spaces. I and II. Acta Math. 196(1), 65–177 (2006). doi:10.1007/s11511-006-0003-7. http://dx.doi.org/10.1007/s11511-006-0003-7

    MathSciNet  MATH  Google Scholar 

  105. Villani, C.: Optimal transport, Old and new. In: Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009). doi:10.1007/978-3-540-71050-9. http://dx.doi.org/10.1007/978-3-540-71050-9

  106. Wald, A.: Sur la courbure des surfaces. C. R. Acad. Sci. Paris 201, 918–920 (1935)

    MATH  Google Scholar 

  107. Wald, A.: Begründung einer koordinatenlosen Differentialgeometrie der Flächen. Ergebnisse eines Math. Kolloquiums, 1. Reihe 7, 24–46 (1936)

    Google Scholar 

Download references

Acknowledgements

Research partly supported by Israel Science Foundation Grants 221/07 and 93/11 and by European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no [URI-306706].

Part of this work was done while visiting the Max Planck Institute, Leipzig. Their gracious and warm hospitality, as well as their support are gratefully acknowledged.

The author would like to thank to organizers of 2013 CIRM Meeting on Discrete Curvature for the opportunity they gave him to write this book chapter, and especially Pascal Romon for his attentive guidance and support during the process of writing this presentation, as well as of the short conference proceeding notes.

Thanks are also due to the anonymous reviewer for his attentive, insightful and most helpful corrections and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Saucan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Saucan, E. (2017). Metric Curvatures Revisited: A Brief Overview. In: Najman, L., Romon, P. (eds) Modern Approaches to Discrete Curvature. Lecture Notes in Mathematics, vol 2184. Springer, Cham. https://doi.org/10.1007/978-3-319-58002-9_2

Download citation

Publish with us

Policies and ethics