Skip to main content

Resource Allocation in Body Area Networks for Energy Harvesting Healthcare Monitoring

  • Chapter
  • First Online:
Handbook of Large-Scale Distributed Computing in Smart Healthcare

Part of the book series: Scalable Computing and Communications ((SCC))

Abstract

Health monitoring body area networks (BANs) have the potential to create a paradigm shift in providing personal healthcare “Johny, Anpalagan (IEEE Potentials 33(2):21-25, 2014) [1].” A BAN consists of multiple wireless body sensors attached to or implanted in the human body to continuously monitor the patient’s vital signs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Finite storage capacity extension has been studied in [70].

References

  1. B. Johny and A. Anpalagan, “Body area sensor networks: Requirements, operations, and challenges,” IEEE Potentials, vol. 33, no. 2, pp. 21–25, 2014.

    Article  Google Scholar 

  2. T. Starner, “Human-powered wearable computing,” IBM systems Journal, vol. 35, no. 3.4, pp. 618–629, 1996.

    Google Scholar 

  3. F. Goodarzy, E. S. Skafidas, and S. Gambini, “Feasibility of energy-autonomous wireless microsensors for biomedical applications: Powering and communication,” IEEE Reviews in Biomedical Engineering, vol. 8, pp. 17–29, 2015.

    Article  Google Scholar 

  4. M.-L. Ku, W. Li, Y. Chen, and K. R. Liu, “Advances in energy harvesting communications: Past, present, and future challenges,” IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1384–1412, 2016.

    Article  Google Scholar 

  5. Y. Zhang, F. Zhang, Y. Shakhsheer, J. D. Silver, A. Klinefelter, M. Nagaraju, J. Boley, J. Pandey, A. Shrivastava, E. J. Carlson, A. Wood, B. H. Calhoun, and B. P. Otis, “A batteryless 19 \(\mu \)W MICS/ISM-band energy harvesting body sensor node SoC for ExG applications,” IEEE Journal of Solid-State Circuits, vol. 48, no. 1, pp. 199–213, 2013.

    Article  Google Scholar 

  6. V. Misra, A. Bozkurt, B. Calhoun, T. Jackson, J. S. Jur, J. Lach, B. Lee, J. Muth, O. Oralkan, M. Ozturk, S. Trolier-McKinstry, D. Vashaee, D. Wentzloff, and Y. Zhu, “Flexible technologies for self-powered wearable health and environmental sensing,” Proceedings of the IEEE, vol. 103, no. 4, pp. 665–681, 2015.

    Article  Google Scholar 

  7. O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy harvesting nodes in fading wireless channels: Optimal policies,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 8, pp. 1732–1743, 2011.

    Article  Google Scholar 

  8. K. Tutuncuoglu and A. Yener, “Optimum transmission policies for battery limited energy harvesting nodes,” IEEE Transactions on Wireless Communications, vol. 11, no. 3, pp. 1180–1189, 2012.

    Article  Google Scholar 

  9. O. Ozel, K. Tutuncuoglu, S. Ulukus, and A. Yener, “Fundamental limits of energy harvesting communications,” IEEE Communications Magazine, vol. 53, no. 4, pp. 126–132, 2015.

    Article  Google Scholar 

  10. S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover, and K. Huang, “Energy harvesting wireless communications: A review of recent advances,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 360–381, 2015.

    Article  Google Scholar 

  11. A. Seyedi and B. Sikdar, “Modeling and analysis of energy harvesting nodes in body sensor networks,” in Proc. 5th International Summer School and Symposium on Medical Devices and Biosensors, 2008, pp. 175–178.

    Google Scholar 

  12. A. Seyedi and B. Sikdar, “Energy efficient transmission strategies for body sensor networks with energy harvesting,” IEEE Transactions on Communications, vol. 58, no. 7, pp. 2116–2126, 2010.

    Google Scholar 

  13. J. Ventura and K. Chowdhury, “Markov modeling of energy harvesting body sensor networks,” in Proc. IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications, 2011, pp. 2168–2172.

    Google Scholar 

  14. Y. He, W. Zhu, and L. Guan, “Optimal resource allocation for pervasive health monitoring systems with body sensor networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 11, pp. 1558–1575, 2011.

    Article  Google Scholar 

  15. S. Manfredi, “Congestion control for differentiated healthcare service delivery in emerging heterogeneous wireless body area networks,” IEEE Wireless Communications, vol. 21, no. 2, pp. 81–90, 2014.

    Article  Google Scholar 

  16. E. Ibarra, A. Antonopoulos, E. Kartsakli, J. J. Rodrigues, and C. Verikoukis, “QoS-aware energy management in body sensor nodes powered by human energy harvesting,” IEEE Sensors Journal, vol. 16, no. 2, pp. 542–549, 2016.

    Article  Google Scholar 

  17. S. Ayazian, V. A. Akhavan, E. Soenen, and A. Hassibi, “A photovoltaic-driven and energy-autonomous CMOS implantable sensor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 4, pp. 336–343, 2012.

    Article  Google Scholar 

  18. Y. K. Tan and S. K. Panda, “Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4424–4435, 2011.

    Article  Google Scholar 

  19. A. Liberale, E. Dallago, and A. L. Barnabei, “Energy harvesting system for wireless body sensor nodes,” in Proc. IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, 2014, pp. 416–419.

    Google Scholar 

  20. W. Y. Toh, Y. K. Tan, W. S. Koh, and L. Siek, “Autonomous wearable sensor nodes with flexible energy harvesting,” IEEE Sensors Journal, vol. 14, no. 7, pp. 2299–2306, 2014.

    Article  Google Scholar 

  21. J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” IEEE Pervasive computing, vol. 4, no. 1, pp. 18–27, 2005.

    Article  Google Scholar 

  22. W. S. Wang, T. O’Donnell, N. Wang, M. Hayes, B. O’Flynn, and C. O’Mathuna, “Design considerations of sub-mW indoor light energy harvesting for wireless sensor systems,” ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 6, no. 2, p. 6, 2010.

    Google Scholar 

  23. S. Basagni, M. Y. Naderi, C. Petrioli, and D. Spenza, “Wireless sensor networks with energy harvesting,” Mobile Ad Hoc Networking: The Cutting Edge Directions, pp. 701–736, 2013.

    Google Scholar 

  24. D. C. Hoang, Y. K. Tan, H. B. Chng, and S. K. Panda, “Thermal energy harvesting from human warmth for wireless body area network in medical healthcare system,” in Proc. International Conference on Power Electronics and Drive Systems (PEDS), 2009, pp. 1277–1282.

    Google Scholar 

  25. R. Kappel, W. Pachler, M. Auer, W. Pribyl, G. Hofer, and G. Holweg, “Using thermoelectric energy harvesting to power a self-sustaining temperature sensor in body area networks,” in Proc. IEEE International Conference on Industrial Technology (ICIT), 2013, pp. 787–792.

    Google Scholar 

  26. G. Wu and X. Yu, “System design on thermoelectic energy harvesting from body heat,” in Proc. 39th Annual Northeast Bioengineering Conference (NEBEC), 2013, pp. 157–158.

    Google Scholar 

  27. H. P. Wong and Z. Dahari, “Human body parts heat energy harvesting using thermoelectric module,” in Proc. IEEE Conference on Energy Conversion (CENCON), 2015, pp. 211–214.

    Google Scholar 

  28. S. Jo, M. Kim, M. Kim, and Y. Kim, “Flexible thermoelectric generator for human body heat energy harvesting,” Electronics letters, vol. 48, no. 16, pp. 1013–1015, 2012.

    Article  Google Scholar 

  29. A. Ghosh, Meenakshi, S. Khalid, V. P. Harigovindan, “Performance analysis of wireless body area network with thermal energy harvesting,” in Proc. Global Conference on Communication Technologies (GCCT), 2015, pp. 916–920.

    Google Scholar 

  30. M. Wahbah, M. Alhawari, B. Mohammad, H. Saleh, and M. Ismail, “Characterization of human body-based thermal and vibration energy harvesting for wearable devices,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 4, no. 3, pp. 354–363, 2014.

    Article  Google Scholar 

  31. V. Leonov, “Thermoelectric energy harvesting of human body heat for wearable sensors,” IEEE Sensors Journal, vol. 13, no. 6, pp. 2284–2291, 2013.

    Article  Google Scholar 

  32. N. B. Amor, O. Kanoun, A. Lay-Ekuakille, G. Specchia, G. Vendramin, and A. Trotta, “Energy harvesting from human body for biomedical autonomous systems,” Sensors, 2008 IEEE, 2008, pp. 678–680.

    Google Scholar 

  33. P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, “Energy harvesting from human and machine motion for wireless electronic devices,” Proceedings of the IEEE, vol. 96, no. 9, pp. 1457–1486, 2008.

    Article  Google Scholar 

  34. G. De Pasquale and A. Somà, “Energy harvesting from human motion with piezo fibers for the body monitoring by MEMS sensors,” in Proc. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2013, pp. 1–6.

    Google Scholar 

  35. L. Xie and M. Cai, “Human motion: Sustainable power for wearable electronics,” IEEE Pervasive Computing, vol. 13, no. 4, pp. 42–49, 2014.

    Article  Google Scholar 

  36. C. Sauer, M. Stanacevic, G. Cauwenberghs, and N. Thakor, “Power harvesting and telemetry in CMOS for implanted devices,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 12, pp. 2605–2613, 2005.

    Article  Google Scholar 

  37. J. Cheng, L. Xia, C. Ma, Y. Lian, X. Xu, C. P. Yue, Z. Hong, and P. Y. Chiang, “A near-threshold, multi-node, wireless body area sensor network powered by RF energy harvesting,” in Proc. IEEE Custom Integrated Circuits Conference, 2012, pp. 1–4.

    Google Scholar 

  38. N. Barroca, H. M. Saraiva, P. T. Gouveia, J. Tavares, L. M. Borges, F. J. Velez, C. Loss, R. Salvado, P. Pinho, R. Gonçalves, N. B. Carvalho, R. Chavez-Santiago, I. Balasingham, “Antennas and circuits for ambient RF energy harvesting in wireless body area networks,” in Proc. IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2013, pp. 532–537.

    Google Scholar 

  39. Z. Liu, Z. Zhong, and Y. X. Guo, “High-efficiency triple-band ambient RF energy harvesting for wireless body sensor network,” in Proc. IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio), 2014, pp. 1–3.

    Google Scholar 

  40. S. Kim, R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and M. M. Tentzeris, “Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms,” Proceedings of the IEEE, vol. 102, no. 11, pp. 1649–1666, 2014.

    Article  Google Scholar 

  41. R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989–2001, 2013.

    Article  Google Scholar 

  42. B. I. Rapoport, J. T. Kedzierski, and R. Sarpeshkar, “A glucose fuel cell for implantable brain-machine interfaces,” PloS one, vol. 7, no. 6, p. e38436, 2012.

    Article  Google Scholar 

  43. A. Zebda, S. Cosnier, J.-P. Alcaraz, M. Holzinger, A. Le Goff, C. Gondran, F. Boucher, F. Giroud, K. Gorgy, H. Lamraoui, P. Cinquin, “Single glucose biofuel cells implanted in rats power electronic devices,” Scientific reports, vol. 3, p. 1516, 2013.

    Google Scholar 

  44. C.-Y. Sue and N.-C. Tsai, “Human powered MEMS-based energy harvest devices,” Applied Energy, vol. 93, pp. 390–403, 2012.

    Article  Google Scholar 

  45. F. Davis and S. P. Higson, “Biofuel cells - recent advances and applications,” Biosensors and Bioelectronics, vol. 22, no. 7, pp. 1224–1235, 2007.

    Article  Google Scholar 

  46. J. Yang and S. Ulukus, “Optimal packet scheduling in an energy harvesting communication system,” IEEE Transactions on Communications, vol. 60, no. 1, pp. 220–230, 2012.

    Article  Google Scholar 

  47. M. Gregori and M. Payaró, “Energy-efficient transmission for wireless energy harvesting nodes,” IEEE Transactions on Wireless Communications, vol. 12, no. 3, pp. 1244–1254, 2013.

    Article  Google Scholar 

  48. B. Varan and A. Yener, “Delay constrained energy harvesting networks with limited energy and data storage,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp. 1550–1564, 2016.

    Article  Google Scholar 

  49. F. Shan, J. Luo, W. Wu, M. Li, and X. Shen, “Discrete rate scheduling for packets with individual deadlines in energy harvesting systems,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 438–451, 2015.

    Article  Google Scholar 

  50. S. Wei, W. Guan, and K. R. Liu, “Power scheduling for energy harvesting wireless communications with battery capacity constraint,” IEEE Transactions on Wireless Communications, vol. 14, no. 8, pp. 4640–4653, 2015.

    Article  Google Scholar 

  51. C. Huang, R. Zhang, and S. Cui, “Optimal power allocation for outage probability minimization in fading channels with energy harvesting constraints,” IEEE Transactions on Wireless Communications, vol. 13, no. 2, pp. 1074–1087, 2014.

    Article  Google Scholar 

  52. F. M. Ozcelik, G. Uctu, and E. Uysal-Biyikoglu, “Minimization of transmission duration of data packets over an energy harvesting fading channel,” IEEE Communications Letters, vol. 12, no. 16, pp. 1968–1971, 2012.

    Article  Google Scholar 

  53. N. Roseveare and B. Natarajan, “An alternative perspective on utility maximization in energy-harvesting wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 1, pp. 344–356, 2014.

    Article  Google Scholar 

  54. O. Orhan, D. Gündüz, and E. Erkip, “Energy harvesting broadband communication systems with processing energy cost,” IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 6095–6107, 2014.

    Article  Google Scholar 

  55. K. Tutuncuoglu, A. Yener, and S. Ulukus, “Optimum policies for an energy harvesting transmitter under energy storage losses,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 467–481, 2015.

    Article  Google Scholar 

  56. K. Tutuncuoglu and A. Yener, “Communicating with energy harvesting transmitters and receivers,” in Proc. Information Theory and Applications Workshop (ITA), 2012, pp. 240–245.

    Google Scholar 

  57. S. Boyd and L. Vandenberghe, Convex optimization.   Cambridge university press, 2004.

    Google Scholar 

  58. R. Srivastava and C. E. Koksal, “Basic performance limits and tradeoffs in energy-harvesting sensor nodes with finite data and energy storage,” IEEE/ACM Transactions on Networking, vol. 21, no. 4, pp. 1049–1062, 2013.

    Article  Google Scholar 

  59. V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy management policies for energy harvesting sensor nodes,” IEEE Transactions on Wireless Communications, vol. 9, no. 4, pp. 1326–1336, 2010.

    Article  Google Scholar 

  60. N. Michelusi, K. Stamatiou, and M. Zorzi, “Transmission policies for energy harvesting sensors with time-correlated energy supply,” IEEE Transactions on Communications, vol. 61, no. 7, pp. 2988–3001, 2013.

    Article  Google Scholar 

  61. P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic approach to energy harvesting communication system optimization,” IEEE Transactions on Wireless Communications, vol. 12, no. 4, pp. 1872–1882, 2013.

    Article  Google Scholar 

  62. S. Mao, M. H. Cheung, and V. W. Wong, “Joint energy allocation for sensing and transmission in rechargeable wireless sensor networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 6, pp. 2862–2875, 2014.

    Article  Google Scholar 

  63. A. Kazerouni and A. Ozgur, “Optimal online strategies for an energy harvesting system with Bernoulli energy recharges,” in Proc. 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2015, pp. 235–242.

    Google Scholar 

  64. Y. Dong, F. Farnia, and A. Ozgur, “Near optimal energy control and approximate capacity of energy harvesting communication,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 3, pp. 540–557, 2015.

    Article  Google Scholar 

  65. D. Shaviv and A. Ozgur, “Universally near optimal online power control for energy harvesting nodes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3620–3631, 2016.

    Google Scholar 

  66. S. Zhang, A. Seyedi, and B. Sikdar, “An analytical approach to the design of energy harvesting wireless sensor nodes,” IEEE Transactions on Wireless Communications, vol. 12, no. 8, pp. 4010–4024, 2013.

    Article  Google Scholar 

  67. I. Krikidis, G. Zheng, and B. Ottersten, “Harvest-use cooperative networks with half/full-duplex relaying,” in Proc. IEEE Wireless Communications and Networking Conference (WCNC), 2013, pp. 4256–4260.

    Google Scholar 

  68. O. Orhan and E. Erkip, “Energy harvesting two-hop communication networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 12, pp. 2658–2670, 2015.

    Article  Google Scholar 

  69. J. Yang, O. Ozel, and S. Ulukus, “Broadcasting with an energy harvesting rechargeable transmitter,” IEEE Transactions on Wireless Communications, vol. 11, no. 2, pp. 571–583, 2012.

    Article  Google Scholar 

  70. O. Ozel, J. Yang, and S. Ulukus, “Optimal broadcast scheduling for an energy harvesting rechargeable transmitter with a finite capacity battery,” IEEE Transactions on Wireless Communications, vol. 11, no. 6, pp. 2193–2203, 2012.

    Article  Google Scholar 

  71. T. M. Cover and J. A. Thomas, Elements of Information Theory.   New York: Wiley, 1991.

    Book  MATH  Google Scholar 

  72. J. Yang and S. Ulukus, “Optimal packet scheduling in a multiple access channel with energy harvesting transmitters,” Journal of Communications and Networks, vol. 14, no. 2, pp. 140–150, 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyang Leng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Leng, S., Yener, A. (2017). Resource Allocation in Body Area Networks for Energy Harvesting Healthcare Monitoring. In: Khan, S., Zomaya, A., Abbas, A. (eds) Handbook of Large-Scale Distributed Computing in Smart Healthcare. Scalable Computing and Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-58280-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58280-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58279-5

  • Online ISBN: 978-3-319-58280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics