Skip to main content

Habitat Losses and Conservation of Mutualisms

  • Chapter
  • First Online:
Mutualisms and Insect Conservation

Abstract

Examples discussed in the previous chapter help to emphasise that knowledge of mutualisms has two rather different roles in practical conservation, but in both those areas of interest, the importance of fundamental understanding of the interactions’ functions can guide the purposes and practices of any needed management. Threats to, and conservation of, mutualisms are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amarasekare P (2004) Spatial dynamics of mutualistic interactions. J Anim Ecol 73:128–142

    Article  Google Scholar 

  • Arribas P, Abellan P, Velasco J, Bilton DT, Millan A, Sanchez-Fernandez D (2012) Evaluating drivers of vulnerability to climate change: a guide for insect conservation strategies. Glob Chang Biol 18:2135–2146

    Article  Google Scholar 

  • Ashworth L, Aguilar R, Galetto L, Aizen MA (2004) Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation? J Ecol 92:717–719

    Article  Google Scholar 

  • Aslan CE, Zavaleta ES, Tershy B, Croll D (2013) Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS One 8(6):e 66993. doi:10.1371/journal.pone.0066993

    Article  CAS  Google Scholar 

  • Banaszak J (1992) Strategy for conservation of wild bees in an agricultural landscape. Agric Ecosyst Environ 40:179–192

    Article  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M (and 7 other authors) (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313:351–354

    Google Scholar 

  • Bluthgen N, Fiedler K (2004) Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J Anim Ecol 73:155–166

    Article  Google Scholar 

  • Bond WJ (1994) Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Philos Trans R Soc Lond B 344:83–90

    Article  Google Scholar 

  • Bronstein JL (1989) A mutualism at the edge of its range. Experientia 45:622–637

    Article  Google Scholar 

  • Bronstein JL (1994) Our current understanding of mutualism. Q Rev Biol 69:31–51

    Article  Google Scholar 

  • Bronstein JL, Wilson WG, Morris WF (2003) Ecological dynamics of mutualist/antagonist communities. Am Nat 162:S24–S39

    Article  PubMed  Google Scholar 

  • Bronstein JL, Dieckmann U, Ferriere R (2004) Coevolutionary dynamics and the conservation of mutualisms. Interim Report IR-04-061, International Institute for Applied Systems Analysis, Laxenburg

    Book  Google Scholar 

  • Bruna EM, Vasconcelos HL, Heredia S (2005) The effect of habitat fragmentation on communities of mutualists: Amazonian ants and their host plants. Biol Conserv 124:209–216

    Article  Google Scholar 

  • BUTT (Butterflies Under Threat Team) (1986) The management of chalk grassland for butterflies. Focus on Nature Conservation, no. 17. Nature Conservation Council, Peterborough

    Google Scholar 

  • Conrad KF, Woiwod IP, Parsons M, Fox R, Warren MS (2004) Long-term population trends in widespread British moths. J Insect Conserv 8:119–136

    Article  Google Scholar 

  • Dennis RLH (2010) A resource-based habitat view for conservation. Butterflies in the British landscape. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Descombes P, Pradervand J-N, Golay J, Guisan A, Pellissier L (2016) Simulated shifts in trophic niche breadth modulate range loss of alpine butterflies under climate change. Ecography 39:796–804

    Article  Google Scholar 

  • Drieu R, Rusch A (2016) Conserving species-rich predator assemblages strengthens natural pest control in a climate warming context. Agric For Entomol. doi:10.1111/afe.12180

    Google Scholar 

  • Evans DM, Turley NE, Tewksbury JJ (2013) Habitat edge effects alter ant-guard protection against herbivory. Landsc Ecol 28:1743–1754

    Article  Google Scholar 

  • Fayle TM, Edwards DP, Foster WA, Yusah KM, Turner REC (2015) An ant-plant by-product mutualism is robust to selective logging of rain forest and conversion to oil palm plantation. Oecologia 178:441–450

    Article  PubMed  PubMed Central  Google Scholar 

  • Filz KJ, Schmitt T (2015) Niche overlap and host specificity in parasitic Maculinea butterflies (Lepidoptera: Lycaenidae) as a measure for potential extinction risks under climate change. Org Divers Evol 15:555–565

    Article  Google Scholar 

  • Fortuna MA, Bascompte J (2006) Habitat loss and the structure of plant-animal mutualistic networks. Ecol Lett 9:281–286

    Article  PubMed  Google Scholar 

  • Forup ML, Henson KSE, Craze PG, Memmott J (2008) The restoration of ecological interactions: plant-pollinator networks on ancient and restored heathlands. J Appl Ecol 45:743–752

    Google Scholar 

  • Fox R (2013) The decline of moths in Great Britain: a review of possible causes. Insect Conserv DIvers 6:5–19

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R (and 45 other authors) (2013) Wild pollinators enhance fruit set of crops regardless of honey bee presence. Science 339: 1608–1611

    Google Scholar 

  • Ghazoul J (2005) Buzziness as usual? Questioning the global pollination crisis. Trends Ecol Evol 20:367–373

    Article  PubMed  Google Scholar 

  • Gilman RT, Fabina NA, Abbott KC, Rafferty NE (2011) Evolution of plant-pollinator mutualisms in response to climate change. Evol Appl. doi:10.1111/j.1752-4571.2011.00202.x

    PubMed  PubMed Central  Google Scholar 

  • Harris LF, Johnson SD (2004) The consequences of habitat fragmentation for plant-pollinator mutualisms. Int J Trop Insect Sci 24:29–43

    Google Scholar 

  • Hegland SJ, Nielsen A, Lazaro A, Bjerknes A-L, Totland O (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195

    Article  PubMed  Google Scholar 

  • Hochberg ME, Thomas JA, Elmes GW (1992) A modelling study of the population dynamics of a Large Blue butterfly, Maculinea rebeli, a parasite of red ant nests. J Anim Ecol 61:397–409

    Article  Google Scholar 

  • Huang J, An J, Wu J, Williams PH (2015) Extreme food-plant specialisation in Megabombus bumblebees as a product of long tongues combined with short nesting seasons. PLoS One. doi:10.1371/lournal.poe.0132358

    Google Scholar 

  • Ikouchi Y, Suetsugu K, Sumikawa H (2015) Diurnal skipper Pelopidas mathias (Lepidoptera: Hesperiidae) pollinates Habenaria radiata (Orchidaceae). Entomol News 125:7–11

    Article  Google Scholar 

  • Janzen DH (1987) Insect diversity of a Costa Rican dry forest: why keep it, and how? Biol J Linn Soc 30:343–356

    Article  Google Scholar 

  • Jevanandam N, Goh AGR, Corlett RT (2013) Climate warming and the potential extinction of fig wasps, the obligate pollinators of figs. Biol Lett 9:20130041. doi.org/10.1098/rsbl.2013.0041

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson SD, Neal PR, Peter CI, Edwards TL (2004) Fruiting failure and limited recruitment in remnant populations of the hawkmoth-pollinated tree Oxyanthus pyriformis subsp. pyriformis (Rubiaceae). Biol Conserv 120:31–39

    Article  Google Scholar 

  • Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am Nat 129:657–677

    Article  Google Scholar 

  • Kaiser-Bunbury CN, Traveset A, Hansen DM (2009) Conservation and restoration of plant-animal mutualisms on oceanic islands. Perspect Plant Ecol Evol Syst 12:131–143. doi:10.1016/j.ppees.2009.10.002

    Article  Google Scholar 

  • Kersch MF, Fonseca CR (2005) Abiotic factors and the conditional outcome of an ant-plant mutualism. Ecology 86:2117–2126

    Article  Google Scholar 

  • Klockmann M, Karajoli F, Kuczyk J, Reimer S, Fischer K (2016) Fitness implications of simulated climate change in three species of copper butterflies (Lepidoptera: Lycaenidae). Biol J Linn Soc doi. 10/1111/bij.12846

  • Larsen KJ, Heady SE, Nault LR (1992) Influence of ants (Hymenoptera: Formicidae) on honeydew excretion and escape behaviors in a myrmecophile, Dalbulus quinquenotatus (Homoptera: Cicadellidae), and its congeners. J Insect Behav 5:109–122

    Article  Google Scholar 

  • Leigh EG (2010) The evolution of mutualism. J Evol Biol 23:2507–2528

    Article  PubMed  Google Scholar 

  • Leimar O, Connor EC (2003) By-product benefits, reciprocity and pseudoreciprocity in mutualism. In: Hammerstein P (ed) Genetic and cultural evolution of cooperation. MIT Press, Cambridge, MA, pp 203–222

    Google Scholar 

  • Macgregor CJ, Pocock MJO, Fox R, Evans DM (2015) Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecol Entomol 40:187–198

    Article  PubMed  Google Scholar 

  • Marquis M, Del Toro I, Pelini SL (2014) Insect mutualisms buffer warming effects on multiple trophic levels. Ecology 93:9–13

    Article  Google Scholar 

  • Memmott J (1999) The structure of a plant-pollinator food web. Ecol Lett 2:276–280

    Article  Google Scholar 

  • Menz MHM, Phillips RD, Winfree R, Kremen C, Aizen MA, Johnson SD, Dixon KW (2011) Reconnecting plants and pollinators: challenges in the restoration of pollination mutualisms. Trends Plant Sci 16:4–11

    Article  CAS  PubMed  Google Scholar 

  • M’Gonigle LK, Williams NM, Lonsdorf E, Kremen C (2016) A tool for selecting plants when restoring habitat for pollinators. Conserv Lett. doi:10.1111/conl.12261

    Google Scholar 

  • Munguira ML, Martin J (1999) Action plan for Maculinea butterflies in Europe. Nature and Environment Series no. 97. Strasbourg, Council of Europe Publishing

    Google Scholar 

  • Moya-Raygoza G, Martinez AV (2014) Ants (Hymenoptera: Formicidae) and trophobiont leafhopper nymphs (Hemiptera: Cicadellidae) become more abundant in shaded conditions: implications for mutualism. Fla Entomol 97:1378–1385

    Article  Google Scholar 

  • New TR (2012) Hymenoptera and conservation. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Pellissier L, Litsios G, Fiedler K, Pottier J, Dubuis A, Pradervand J-N, Salamin N, Guisan A (2012a) Loss of interactions with ants under cold climate in a regional myrmecophilous butterfly fauna. J Bigeogr 39:1782–1780

    Article  Google Scholar 

  • Pellissier L, Rasmanns S, Litsiong G, Fiedler K, Dubuis A, Pottier J, Guisan A (2012b) High host-plant nitrogen content: a prerequisite for the evolution of ant-caterpillar mutualisms? J Evol Biol. doi:10.1111/j.1420-9101.2012.02555x

    PubMed  Google Scholar 

  • Pellissier L, Alvarez N, Espindola A, Pottier J, Dubuis A, Pradervand J-N, Guisan A (2013) Phylogenetic alpha and beta diversities of butterfly communities correlate with climate in the western Swiss Alps. Ecography 36:541–550

    Article  Google Scholar 

  • Pemberton RW, Wheeler GS (2006) Orchid bees don’t need orchids, evidence from the naturalization of an orchid bee in Florida. Ecology 87:1995–2001

    Article  PubMed  Google Scholar 

  • Plein M, Bode M, Moir ML, Vesk PA (2016) Translocation strategies for mutualistic species depend on interspecific interaction type. Ecol Appl 26:1186–1197

    Article  PubMed  Google Scholar 

  • Prinzing A, Dauber J, Hammer EC, Hammouti N, Bohning-Gaese K (2007) Perturbed partners: opposite responses of plant and animal mutualist guilds to inundation disturbances. Oikos 116:1299–1310

    Article  Google Scholar 

  • Reymond A, Purcell J, Cherix D, Guisan A, Pellissier L (2013) Functional diversity decreases with temperature in high elevation ant fauna. Ecol Entomol 38:364–373

    Article  Google Scholar 

  • Sagata K, Gibb H (2016) The effect of temperature increases on an ant-Hemiptera-plant interaction. PLoS One 11(7):e0155131. doi:10.1371/lournal.pone.0155131

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz CB, Russell C, Wynn L (2008) Restoration, reintroduction, and captive propagation for at-risk butterflies: a review of British and American conservation efforts. Israel J Ecol Evol 54:41–61

    Article  Google Scholar 

  • Senapathi D, Biesmeijer JC, Breeze TD, Kleijn D, Potts SG, Carvalheiro LG (2015) Pollinator conservation – the difference between managing for pollination services and preserving pollinator diversity. Curr Opin Insect Sci 12:93–101

    Article  Google Scholar 

  • Stanton ML (2003) Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 162:S10–S23

    Article  PubMed  Google Scholar 

  • Stuble KL, Patterson CM, Rodriguez-Cabal MA, Ribbons RR, Dunn RR, Sanders NJ (2014) Ant-mediated seed dispersal in a warmed world. PeerJ:e286. doi:10.7717/peerj.286

    PubMed  PubMed Central  Google Scholar 

  • Taki H, Kevan PG (2007) Does habitat loss affect the communities of plants and insects equally in plant-pollinator interactions? Preliminary findings. Biodivers Conserv 16:3147–3161

    Article  Google Scholar 

  • Tanaka HO, Yamane S, Nakashizuka T, Momose K, Itioka T (2007) Effects of deforestation on mutualistic interactions of ants with plants and hemipterans in tropical rainforest of Borneo. Asian Myrmecol 1:31–50

    Google Scholar 

  • Thomas JA (1980) Why did the large blue become extinct in Britain? Oryx 15:243–247

    Article  Google Scholar 

  • Thomas JA, Simcox DJ, Clarke RT (2009) Successful conservation of a threatened Maculinea butterfly. Science 325:80–83

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN, Fernandez CC (2006) Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology 87:103–112

    Article  PubMed  Google Scholar 

  • Thomson FJ, Auld TD, Ramp D, Kingsford RD (2016) A switch in keystone seed-dispersing ant genera between two elevations for a myrmecochorous plant, Acacia terminalis. PLoS One 11(6):e 0157632. doi:10.1371/journal.pone.0157632

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Ugelvig LV, Andersen A, Boomsma JJ, Nash DR (2012) Dispersal and gene flow in the rare, parasitic Large Blue butterfly Maculinea arion. Mol Ecol 21:3224–3236

    Article  CAS  PubMed  Google Scholar 

  • Valiente-Banuet A, Aizen MA, Alcantara JM, Arroyo J, Cocucci A (and 14 other authors) (2014) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol. doi:10.1111/1365-2435.12356

  • Vazquez DP, Bluthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant-animal mutualistic networks: a review. Ann Bot 103:1445–1457

    Article  PubMed  PubMed Central  Google Scholar 

  • Wadygmar AM, Cumming MN, Weis AE (2015) The success of assisted colonization and assisted gene flow depends on phenology. Glob Chang Biol. doi:10.1111/gcb.1988

    Google Scholar 

  • Wang R-W, Sun B-F (2009) Seasonal change in the structure of fig-wasp community and its implication for conservation. Symbiosis 47:77–83

    Article  Google Scholar 

  • Warren M, Robertson MP, Greeff JM (2010) A comparative approach to understanding factors limiting abundance patterns and distributions in a fig tree-fig wasp mutualism. Ecography 33:148–158

    Article  Google Scholar 

  • Warren RJ II, Bradford MA (2014) Mutualism fails when climate response differs between interacting species. Glob Chang Biol 20:466–474

    Article  PubMed  Google Scholar 

  • Wilcock C, Neyland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277

    Article  CAS  PubMed  Google Scholar 

  • Wynhoff I (2001) At home on foreign meadows. The reintroduction of two Maculinea butterfly species. Wageningen Agricultural University, Wageningen

    Google Scholar 

  • Yao I (2014) Costs and constraints in aphid-ant mutualism. Ecol Res 29:383–391

    Article  Google Scholar 

  • Zhou A, Kuang B, Gao Y (2015) Does the host plant affect the benefits from mutualisms? The invasive mealybug and ghost ant association. Ecol Entomol 40:782–786

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

New, T.R. (2017). Habitat Losses and Conservation of Mutualisms. In: Mutualisms and Insect Conservation. Springer, Cham. https://doi.org/10.1007/978-3-319-58292-4_10

Download citation

Publish with us

Policies and ethics