Skip to main content

Elasticity and Thermoelasticity

  • Chapter
  • First Online:
Modeling and Design of Flexible Pavements and Materials

Abstract

This chapter presents an overview of the historical development of the three-dimensional theories of elasticity and thermoelasticity. While it is not an exhaustive coverage of this subject, the material presented herein is introduced as a means of preparing the reader for the subjects to come that deal with the inelastic deformations that occur in flexible pavements. As such, this material is an essential part of the knowledge necessary to design modern flexible road ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, D., & Searcy, C. (2006). A model for predicting the evolution of multiple cracks on multiple length scales in viscoelastic composites. Journal Materials Science, 41, 6510.

    Article  Google Scholar 

  • Allen. D. (2013). Introduction to the mechanics of deformable solids: Bars and beams. Springer.

    Google Scholar 

  • Allen, D. (2014). How mechanics shaped the modern world. Springer.

    Google Scholar 

  • Amrouche, C., Ciarlet, P., Gratie, L., & Kesavan, S. (2006). On Saint Venant’s compatibility conditions and Poincaré’s lemma. Comptes Rendus de l’Académie des Sciences - Series I, 342, 887–891.

    MATH  Google Scholar 

  • Boley, B., & Weiner, J. (1960). Theory of thermal stresses. Wiley.

    Google Scholar 

  • Boltzmann, L. (1874). Zur theorie der elastichen Nachwirkung. Sitz K u K Akad Wien, 70, 275.

    Google Scholar 

  • Boyd, J., Costanzo, F., & Allen, D. (1993). A micromechanics approach for constructing locally averaged damage dependent constitutive equations in inelastic composites. International Journal of Damage Mechanics, 2, 209.

    Google Scholar 

  • Cesaro, E. (1906). Sulle formole del Volterra, fondamentali nella teoria delle dostorsioni elastiche. Rendiconto dell’ Academia della Scienze Fisiche e Matematiche (Società Reale di Napoli).

    Google Scholar 

  • Coleman, B., & Noll, W. (1963). The thermodynamics of elastic materials with heat conduction and viscosity. Archive Rational Mechanics and Analysis, 13, 167.

    Article  MathSciNet  MATH  Google Scholar 

  • Duhamel, J. (1837), Second mémoire sur les phénomènes thermo-mécaniques. Journal de l’École Polytechnique.

    Google Scholar 

  • Euler, L. (1744). Methodus inveniendi lineas curvas. St. Petersburg.

    Google Scholar 

  • Fourier, J. (1822). Theorie analytique de la chaleur. Firmin Didot.

    Google Scholar 

  • Fung, Y. (1965). Foundations of solid mechanics. Prentice Hall.

    Google Scholar 

  • Galilei, G. (1638). Dialogues concerning two new sciences. University of Toronto Library.

    Google Scholar 

  • Hill, R. (1963). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 13, 89.

    Article  MATH  Google Scholar 

  • Love, A. (1906). A treatise on the mathematical theory of elasticity. University of Michigan library.

    Google Scholar 

  • Malvern, L. (1969). Introduction to the mechanics of a continuous medium. Prentice-Hall.

    Google Scholar 

  • Mandel, J. (1964). Proceedings of the 11th International Congress of Applied Mechanics (Vol. 502).

    Google Scholar 

  • Maugin, G. (2014). Continuum mechanics through the eighteenth and nineteenth centuries. Springer.

    Google Scholar 

  • Maxwell, J. (1860). Illustrations of the dynamical theory of gases, Parts I and II. Philosophical Magazine, 19, 9.

    Google Scholar 

  • Newton, I. (1687). Principia—Vol. 1—The motion of bodies. University of California Press.

    Google Scholar 

  • Saint-Venant, A. (1856). Mémoire sur la torsion des prismes, avec des considérations sur leur flexion ainsi que sur l’équilibre intérieur des solides élastiques en général, et des formules pratiques pour le calcul de leur résistance à divers efforts s’exercant simultanément. Mémoires Présentés par divers savants à l’Académie des sciences de l’Institut de France, 14, 233–560.

    Google Scholar 

  • Timoshenko, S. (1970). Theory of elasticity. McGraw-Hill.

    Google Scholar 

  • Todhunter, I., & Pearson, K. (1893). A history of the theory of elasticity and the strength of materials from Galilei to the present time. Cambridge University Press.

    Google Scholar 

  • Truesdell, C., Noll, W., & Antman, S. (2004). The non-linear field theories of mechanics. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dallas N. Little .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Little, D.N., Allen, D.H., Bhasin, A. (2018). Elasticity and Thermoelasticity. In: Modeling and Design of Flexible Pavements and Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-58443-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58443-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58441-6

  • Online ISBN: 978-3-319-58443-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics