Skip to main content

Syntheses of Radical Polymers

  • Chapter
  • First Online:
Organic Radical Polymers

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 782 Accesses

Abstract

What forms, follows functions; however, even the best of intentions can only be realized if and only if a successful formation (i.e., synthesis) of the targeted material can be achieved. Thus, a discussion of the viable and facile synthetic routes for the formation of the desired radical polymers is itself an important field of research. This is because one needs to understand and contain the reactivity of the pendant radical units [1]. Ambient stable radicals can be, and often are, reactive towards various chemical species including other radicals [2]. For instance, radical polymerizations of radical-containing stable monomers may not be a viable approach for the synthesis of radical polymers due to their reactivity. Thus, the choice of polymerization and the associated choice of monomer units are crucial in design and formation of any given radical polymer or polyradical (Fig. 2.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Wingate AJ, Boudouris BW (2016) Recent advances in the syntheses of radical-containing macromolecules. J Polym Sci A 54:1875–1894; (b) Zhang K, Monteiro MJ, Jia Z (2016) Stable organic radical polymers: synthesis and applications. Polym Chm 7:5589–5614

    Google Scholar 

  2. Togo H (2004) Advanced free radical reactions for organic synthesis, 1st edn. Elsevier Science, Amsterdam

    Google Scholar 

  3. (a) Kurosaki T, Lee KW, Okawara M (1972) Polymers having stable radicals. I. Synthesis of nitroxyl polymers from 4-methacryloyl derivatives of 2,2,6,6-tetramethylpiperidine. J Polym Sci 10:3295–3310; (b) Kurosaki T, Takahashi O, Okawara M (1974) Polymers having stable radicals. II. Synthesis of nitroxyl polymers from 4-methacryloyl derivatives of 1-hydroxy-2,2,6,6-tetramethylpiperidine. J Polym Sci A 12:1407–1420

    Google Scholar 

  4. Rostro L, Baradwaj AG, Boudouris BW (2013) Controlled radical polymerization and quantification of solid state electrical conductivities of macromolecules bearing pendant stable radical groups. ACS Appl Mater Interfaces 5:9896–9901

    Article  Google Scholar 

  5. (a) Hauffman G, Rolland J, Bourgeois J-P, Vlad A, Gohy J-F (2013) Synthesis of nitroxide-containing block copolymers for the formation of organic cathodes. J Polym Sci A 51:101–108; (b) Hauffman G, Vlad A, Janoschka T, Schubert US, Gohy J-F (2015) Nanostructured organic radical cathodes from self-assembled nitroxide-containing block copolymer thin films. J Mater Chem A 3:19575–19581

    Google Scholar 

  6. (a) Chae IS, Koyano M, Oyaizu K, Nishide H (2013) Self doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode active material. J Mater Chem A 1:1326–1333; (b) Chae IS, Koyano M, Sukegawa T, Oyaizu K, Nishide H (2013) Redox equilibrium of a zwitterionic radical polymer in a non-aqueous electrolyte as a novel Li+ host material in a Li-ion battery. J Mater Chem A 1:9608–9611; (c) Chan H, Wang Y, Boudouris BW (2015) Effect of intrachain sulfonic acid dopants on the solid state charge mobility of a model radical polymer. Thin Solid Films 577:56–61

    Google Scholar 

  7. Rostro L, Baradwaj AG, Muller AR, Laster JS, Boudouris BW (2015) Synthesis and thin-film self-assembly of a radical-containing diblock copolymers. MRS Commun 5:257–263

    Article  Google Scholar 

  8. Sukegawa T, Omata H, Masuko I, Oyaizu K, Nishide H (2014) Anionic polymerization of 4-methacroloyloxy-TEMPO using an MMA-capped initiator. ACS Macro Lett 3:240–243

    Article  Google Scholar 

  9. Sukegawa T, Masuko I, Oyaizu K, Nishide H (2014) Expanding the dimensionality of polymers populated with organic robust radicals towards flow cell application: synthesis of TEMPO-crowded bottlebrush polymers using anionic polymerization and ROMP. Macromolecules 47:8611–8617

    Article  Google Scholar 

  10. Liedel C, Ober CK (2016) Nanopatterning of stable radical containing block copolymers for highly ordered functional nanomeshes. Macromolecules 49:5884–5892

    Article  Google Scholar 

  11. (a) Fu H, Policarpio DM, Batteas JD, Bergbreiter DE (2010) Redox-controlled ‘smart’ polyacrylamide solubility. Polym Chem 1:631–633; (b) Suga T, Aoki K, Yashiro T, Nishide H (2016) “Click” incorporation of radical/ionic sites into a reactive block copolymer: a facile and on-domain functionalization approach towards organic resistive memory. Macromol Rapid Commun 37:53–59

    Google Scholar 

  12. (a) Bugnon L, Morton CJH, Novak P, Vetter J, Nesvadba P (2007) Synthesis of poly(methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem Mater 19:2910–2914; (b) Lopez-Pena HA, Hernandez-Munoz LS, Frontana-Uribe BA, Gonzalez FJ, Gonzalez I, Frontana C, Cardoso J (2012) Tacticity influence on the electrochemical reactivity of group-transfer polymerization synthesized PTMA. J Phys Chem B 116:5542–5550

    Google Scholar 

  13. Wang Y-H, Hung M-K, Lin C-H, Lin H-C, Lee J-T (2011) Patterned nitroxide polymer brushes for thin-film cathodes in organic radical batteries. Chem Commun 47:1249–1251

    Article  Google Scholar 

  14. Yang J-J, Li C-C, Yang Y-F, Wang C-Y, Lin C-H, Lee J-T (2016) Superparamagnetic core-shell radical polymer brush as efficient catalyst for oxidation of alcohols to aldehydes and ketones. RSC Adv 6:63472–63476

    Article  Google Scholar 

  15. Saito K, Hirose K, Okayasu T, Nishide H, Hearn MTW (2013) TEMPO radical polymer grafted silicas as solid state catalysts for the oxidation of alcohols. RSC Adv 3:9752–9756

    Article  Google Scholar 

  16. Koshika K, Chikushi N, Sano N, Oyaizu K, Nishide H (2010) A TEMPO-substituted polyacrylamide as a new cathode material: an organic rechargeable device composed of polymer electrodes and aqueous electrolyte. Green Chem 12:1573–1575

    Article  Google Scholar 

  17. Koshika K, Sano N, Oyaizu K, Nishide H (2009) An aqueous electrolyte-type, rechargeable device utilizing a hydrophilic radical polymer-cathode. Macromol Chem Phys 210:1989–1995

    Article  Google Scholar 

  18. (a) Zhang X, Li H, Li L, Lu G, Zhang S, Gu L, Xia Y, Huang X (2008) Polyallene with pendant nitroxyl radicals. Polymer 49:3393–3398; (b) Ibe T, Frings RB, Lachowicz A, Kyo S, Nishide H (2010) Nitroxide polymer networks formed by Michael addition: on-site cured electrode-active organic coating. Chem Commun 46:3475–3477

    Google Scholar 

  19. Paletta JT, Pink M, Foley B, Rajca S, Rajca A (2012) Synthesis and reduction kinetics of sterically shielded pyrrolidine nitroxides. Org Lett 14:5322–5325

    Article  Google Scholar 

  20. Oyaizu K, Kawamoto T, Suga T, Nishide H (2010) Synthesis and charge transport properties of a redox-active nitroxide polyethers with large site density. Macromolecules 43:10382–10389

    Article  Google Scholar 

  21. Rajca A, Wang Y, Boska M, Paletta JT, Olankitwanit A, Swanson MA, Mitchell DG, Eaton SS, Eaton GR, Rajca S (2012) Organic radical contrast agents for magnetic resonance imaging. J Am Chem Soc 134:15724–15727

    Article  Google Scholar 

  22. Katsumata T, Satoh M, Wada J, Shiotsuki M, Sanda F, Masuda T (2006) Polyacetylene and polynorbornene derivatives carrying TEMPO. Synthesis and properties as organic radical battery materials. Macromol Rapid Commun 27:1206–1211

    Article  Google Scholar 

  23. Grubbs RH, Wenzel AG, O’Leary DJ, Khosravi E (eds) (2015) Handbook of methathesis, 3 volume set, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  24. (a) Oyaizu K, Ando Y, Konishi H, Nishide H (2008) Nernstian adsorbate-like bulk layer of organic radical polymers for high-density charge storage purposes. J Am Chem Soc 130:14459–14461; (b) Suga T, Sakata M, Aoki K, Nishide H (2014) Synthesis of pendant radical- and ion-containing block copolymers via ring-opening metathesis polymerization for organic resistive memory. ACS Macro Lett 3:703–707

    Google Scholar 

  25. Suga T, Konishi H, Nishide H (2007) Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. Chem Commun 1730–1732

    Google Scholar 

  26. Binder WH, Pulamagatta B, Kir O, Kurzhals S, Barqawi H, Tanner S (2009) Monitoring block-copolymer crossover-chemistry in ROMP: catalyst evaluation via mass-spectrometry (MALDI). Macromolecules 42:9457–9466

    Article  Google Scholar 

  27. Adekunle O, Tanner S, Binder WH (2010) Synthesis and crossover reaction of TEMPO containing block copolymer via ROMP. Beilstein J Org Chem. doi:10.3762/bjoc.6.59

    Google Scholar 

  28. Suga T, Y-J P, Kasatori S, Nishide H (2007) Cathode and anode active poly(nitroxylstyrene)s for rechargeable batteries: p- and n- type redox switching via substituent effects. Macromolecules 40:3167–3173

    Article  Google Scholar 

  29. Suga T, Sugita S, Ohshiro H, Oyaizu K, Nishide H (2011) p- and n- type bipolar redox-active radical polymer: toward totally organic polymer-based rechargeable devices with variable configuration. Adv Mater 23:751–754

    Article  Google Scholar 

  30. Sukegawa T, Kai A, Oyaizu K, Nishide H (2013) Synthesis of pendant nitronyl nitroxide radical-containing poly(norbornene)s as ambipolar electrode-active materials. Macromolecules 46:1361–1367

    Article  Google Scholar 

  31. Rappoport Z (ed) (2003) The chemistry of phenols (chemistry of functional groups) 2- volume set. Wiley Interscience, Chichester

    Google Scholar 

  32. Jahnert T, Hager MD, Schubert US (2014) Application of phenolic radicals for antioxidants, as active materials in batteries, magnetic materials and ligands for metal-complexes. J Mater Chem A 2:15234–15251

    Article  Google Scholar 

  33. Nishide H, Miyasaka M, Tsuchida E (1998) High-spin polyphenoxyls attached to star-shaped poly(phenylenevinylene)s. J Org Chem 63:7399–7407

    Article  Google Scholar 

  34. Kaneko T, Makino T, Miyaji H, Taraguchi M, Aoki T, Miyasaka M, Nishide H (2003) Ladderlike ferromagnetic spin coupling network on a π-conjugated pendant polyradical. J Am Chem Soc 125:3554–3557

    Article  Google Scholar 

  35. Suga T, Ohshiro H, Sugita S, Oyaizu K, Nishide H (2009) Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv Mater 21:1627–1630

    Article  Google Scholar 

  36. Bartlett PD, Funahashi T (1962) Galvinoxyl (2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadiene-1-ylidene)-p-tolyloxy) as a scavenger of shorter-lived free radicals. J Am Chem Soc 84:2596–2601

    Article  Google Scholar 

  37. Yonekuta Y, Susuki K, Oyaizu K, Honda K, Nishide H (2007) Battery-inspired, nonvolatile, and rewritable memory architecture: a radical polymer-based organic device. J Am Chem Soc 129:14128–14129

    Article  Google Scholar 

  38. Jahnert T, Haupler B, Janoschka T, Hager MD, Schubert US (2014) Polymers based on stable phenoxyl radicals for the use in organic radical batteries. Macromol Rapid Commun 35:882–887

    Article  Google Scholar 

  39. Miyasaka M, Yamazaki T, Tsuchida E, Nishide H (2001) Magnetic and electrical properties of poly(3-radical-substituted-thiophene)s. Polyhedron 20:1157–1162

    Article  Google Scholar 

  40. Kunz TK, Wolf MO (2011) Electrodeposition and properties of TEMPO functionalized polythiophene thin films. Polym Chem 2:640–644

    Article  Google Scholar 

  41. Lin C-H, Chau C-M, Lee J-T (2012) Synthesis and characterization of polythiophene grafted with a nitroxide radical polymer via atom transfer radical polymerization. Polym Chem 3:1467–1474

    Article  Google Scholar 

  42. Song D, Chen Q, Tang D, Shen Z, Li M, Ma C (2015) Electropolymerization and electrocatalytic activity of poly(4-thienylacetyl-amino-2,2,6,6-tetramethylpiperidinyl-1-yloxy)/(2,2-bithiophene) copolymer. J Electrochem Soc 162:H251–H255

    Article  Google Scholar 

  43. Li F, Zhang Y, Kwon SR, Lutkenhaus JL (2016) Electropolymerized polythiophenes bearing pendant nitroxide radicals. ACS Macro Lett 5:337–341

    Article  Google Scholar 

  44. Casado N, Hernandez G, Veloso A, Devaraj S, Mecerreyes D, Armand M (2016) PEDOT radical polymer with synergetic redox and electrical properties. ACS Macro Lett 5:59–64

    Article  Google Scholar 

  45. (a) Rajca A, Rajca S, Wongsriratakanul J (1999) Very high-spin organic polymer: π-conjugated hydrocarbon network with average spin of S ≥ 40. J Am Chem Soc 121:6308–6309; (b) Rajca A, Wongsriratanakul J, Rajca S (2001) Magnetic ordering in an organic polymer. Science 294:1503–1505; (c) Rajca A, Wongsriratanakul J, Rajca S (2004) Organic spin clusters: Macrocyclic-macrocyclic polyarylmethyl polyradicals with very high spin S = 5–13. J Am Chem Soc 126:6608–6626; (d) Gallagher N, Olankitwanit A, Rajca A (2015) High-spin organic molecules. J Org Chem 80:1291–1298

    Google Scholar 

  46. (a) Rajca A (1991) Synthesis of 1,3-connected polyarylmethanes. J Org Chem 56:2557–2563. (b) Rajca A (2002) From high-spin organic molecules to organic polymers with magnetic ordering. Chem Eur J 8:4835–4841

    Google Scholar 

  47. (a) Rajca A, Shiraishi K, Rajca S (2009) Stable diarylnitroxide diradical with triplet ground state. Chem Commun 4372–4374; (b) Rajca A, Boratynski PJ, Olankitwanit A, Shiraishi K, Pink M, Rajca S (2012) Ladder oligo(m-aniline)s: derivatives of azaacenes with cross-conjugated π-systems. J Org Chem 77:2107–2120; (c) Olankitwanit A, Rajca S, Rajca A (2015) Aza-m-xylylene diradical with increased steric protection of the aminyl radicals. J Org Chem 80:5035–5044

    Google Scholar 

  48. Rajca A, Olankitwanit A, Wang Y, Boratynski PJ, Pink M, Rajca S (2013) High-spin S = 2 ground state aminyl tetraradicals. J Am Chem Soc 135:18205–18215

    Article  Google Scholar 

  49. Xu F, Xu H, Chen X, Wu D, Wu Y, Liu H, Gu C, Fu R, Jiang D (2015) Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew Chem Int Ed 54:6814–6818

    Article  Google Scholar 

  50. Hughes BK, Braunecker WA, Bobela DC, Nanayakkara SU, Reid OG, Johnson JC (2016) Covalently bound nitroxyl radicals in an organic framework. J Phys Chem Lett 7:3660–3665

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Mukherjee, S., Boudouris, B.W. (2017). Syntheses of Radical Polymers. In: Organic Radical Polymers. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-58574-1_2

Download citation

Publish with us

Policies and ethics