Skip to main content

Applications of Complexity Analysis in Clinical Heart Failure

  • Chapter
  • First Online:
Complexity and Nonlinearity in Cardiovascular Signals

Abstract

Heart failure is known to influence heart rhythm in patients. Complexity analysis techniques, including techniques associated with entropy, have great potential for providing a better understanding of cardiac rhythms, and for helping research in this area. We review the analysis principles of conventional time-domain analysis, frequency-domain analysis and of newer complexity analysis. We then illustrate the techniques using real clinical data, allowing a comparison of the techniques, and also of the differences between normal heart rate variability and that associated with heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006)

    Article  Google Scholar 

  2. Huikuri, H.V., Perkiömaki, J.S., Maestri, R., Pinna, G.D.: Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philos. Trans. A Math. Phys. Eng. Sci. 367, 1223–1238 (2009)

    Article  PubMed  Google Scholar 

  3. Makikallio, T.H., Tapanainen, J.M., Tulppo, M.P., Huikuri, H.V.: Clinical applicability of heart rate variability analysis by methods based on nonlinear dynamics. Card. Electrophysiol. Rev. 6, 250–255 (2002)

    Article  PubMed  Google Scholar 

  4. Voss, A., Schulz, S., Schroeder, R., Baumert, M., Caminal, P.: Methods derived from nonlinear dynamics for analysing heart rate variability. Philos. Trans. A Math. Phys. Eng. Sci. 367, 277–296 (2009)

    Article  PubMed  Google Scholar 

  5. Weiss, J.N., Garfinkel, A., Spano, M.L., Ditto, W.L.: Chaos and chaos control in biology. J. Clin. Invest. 93, 1355–1360 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brennan, M., Palaniswami, M., Kamen, P.: Poincare plot interpretation using a physiological model of HRV based on a network of oscillators. Am. J. Physiol. Heart Circ. Physiol. 283, H1873–H1886 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Kamen, P.W., Krum, H., Tonkin, A.M.: Poincare plot of heart rate variability allows quantitative display of parasympathetic nervous activity in humans. Clin. Sci. 91, 201–208 (1996)

    Article  CAS  PubMed  Google Scholar 

  8. Laitio, T.T., Mäkikallio, T.H., Huikuri, H.V., Kentala, E.S., Uotila, P., Jalonen, J.R., Helenius, H., Hartiala, J., Yli-Mäyry, S., Scheinin, H.: Relation of heart rate dynamics to the occurrence of myocardial ischemia after coronary artery bypass grafting. Am. J. Cardiol. 89, 1176–1181 (2002)

    Article  PubMed  Google Scholar 

  9. Kamen, P., Tonkin, A.: Application of the Poincare plot to heart rate variability: a new measure of functional status in heart failure. Aust. NZ J. Med. 25, 18–26 (1995)

    Article  CAS  Google Scholar 

  10. Kobayashi, M., Musha, T.: 1/f fluctuation of heartbeat period. I.E.E.E. Trans. Biomed. Eng. 29, 456–457 (1982)

    Article  CAS  Google Scholar 

  11. Lombardi, F.: Chaos theory, heart rate variability, and arrhythmic mortality. Circulation. 108, 8–10 (2000)

    Article  Google Scholar 

  12. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 5, 82–87 (1995)

    Article  CAS  PubMed  Google Scholar 

  13. Huikuri, H.V., Mäkikallio, T.H., Peng, C.K., Goldberger, A.L., Hintze, U., Møller, M.: Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation. 101, 47–53 (2000)

    Article  CAS  Google Scholar 

  14. Mäkikallio, T.H., Høiber, S., Køber, L., Torp-Pedersen, C., Peng, C.K., Goldberger, A.L., Huikuri, H.V.: Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. Am. J. Cardiol. 83, 836–839 (1999)

    Article  PubMed  Google Scholar 

  15. Ivanov, P.C., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z.H.E.: Multifractality in human heartbeat dynamics. Nature. 399, 461–465 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. Hadamard, J.: Les surfaces a courbures opposees et leurs lignes geodesiques. J. Math. Pures. Appl. 4, 27–73 (1898)

    Google Scholar 

  17. Kurths, J., Voss, A., Saparin, P., Witt, A., Kleiner, H.J., Wessel, N.: Quantitative analysis of heart rate variability. Chaos. 5, 88–94 (1995)

    Article  PubMed  Google Scholar 

  18. Voss, A., Kurths, J., Kleiner, H.J., Witt, A., Wessel, N., Saparin, P., Osterziel, K.J., Schurath, R., Dietz, R.: The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc. Res. 31, 419–433 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Porta, A., Guzzetti, S., Montano, N., Furlan, R., Pagani, M., Malliani, A., Cerutti, S.: Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. I.E.E.E. Trans. Biomed. Eng. 48, 1282–1291 (2001)

    Article  CAS  Google Scholar 

  20. Porta, A., Faes, L., Masé, M., D’Addio, G., Pinna, G.D., Maestri, R., Montano, N., Furlan, R., Guzzetti, S., Nollo, G., Malliani, A.: An integrated approach based on uniform quantization for the evaluation of complexity of short-term heart period variability: application to 24 h Holter recordings in healthy and heart failure humans. Chaos. 17, 015117 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory. 22, 75–81 (1976)

    Article  Google Scholar 

  22. Abásolo, D., Hornero, R., Gómez, C., García, M., López, M.: Analysis of EEG background activity in Alzheimer’s disease patients with Lempel-Ziv complexity and central tendency measure. Med. Eng. Phys. 28, 315–322 (2006)

    Article  PubMed  Google Scholar 

  23. Sarlabous, L., Torres, A., Fiz, J.A., Morera, J., Jané, R.: Index for estimation of muscle force from mechanomyography based on the Lempel-Ziv algorithm. J. Electromyogr. Kinesiol. 23, 548–557 (2013)

    Article  PubMed  Google Scholar 

  24. Zhang, Y.T., Wei, S.S., Liu, H., Zhao, L.N., Liu, C.Y.: A novel encoding Lempel-Ziv complexity algorithm for quantifying the irregularity of physiological time series. Comput. Methods Prog. Biomed. 133, 7–15 (2016)

    Article  Google Scholar 

  25. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U. S. A. 88, 2297–2301 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E. 71, 021906 (2005)

    Article  Google Scholar 

  27. Liu, C.Y., Liu, C.C., Shao, P., Li, L.P., Sun, X., Wang, X.P., Liu, F.: Comparison of different threshold values r for approximate entropy: application to investigate the heart rate variability between heart failure and healthy control groups. Physiol. Meas. 32, 167–180 (2011b)

    Article  PubMed  Google Scholar 

  28. Pincus, S.M., Goldberger, A.L.: Physiological time-series analysis: what does regularity quantify? Am. J. Physiol. Heart Circ. Physiol. 266, H1643–H1656 (1994)

    CAS  Google Scholar 

  29. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)

    CAS  PubMed  Google Scholar 

  30. Lake, D.E., Richman, J.S., Griffin, M.P., Moorman, J.R.: Sample entropy analysis of neonatal heart rate variability. Am. J. Phys. Regul. Integr. Comp. Phys. 283, R789–R797 (2002)

    CAS  Google Scholar 

  31. Tuzcu, V., Nas, S., Börklü, T., Ugur, A.: Decrease in the heart rate complexity prior to the onset of atrial fibrillation. Europace. 8, 398–402 (2006)

    Article  PubMed  Google Scholar 

  32. Chen, W.T., Zhuang, J., Yu, W.X., Wang, Z.Z.: Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 31, 61–68 (2009)

    Article  PubMed  Google Scholar 

  33. Liu, C.Y., Li, K., Zhao, L.N., Liu, F., Zheng, D.C., Liu, C.C., Liu, S.T.: Analysis of heart rate variability using fuzzy measure entropy. Comput. Biol. Med. 43, 100–108 (2013)

    Article  PubMed  Google Scholar 

  34. Ahmed, M.U., Mandic, D.P.: Multivariate multiscale entropy: a tool for complexity analysis of multichannel data. Phys. Rev. E. 84, 061918 (2011)

    Article  Google Scholar 

  35. Ahmed, M.U., Mandic, D.P.: Multivariate multiscale entropy analysis. IEEE Signal. Proc. Lett. 19, 91–94 (2012)

    Article  Google Scholar 

  36. Azami, H., Escudero, J.: Refined composite multivariate generalized multiscale fuzzy entropy: a tool for complexity analysis of multichannel signals. Phys. A. 465, 261–276 (2017)

    Article  Google Scholar 

  37. Arbolishvili, G.N., Mareev, V.I., Orlova, I.A., Belenkov, I.N.: Heart rate variability in chronic heart failure and its role in prognosis of the disease. Kardiologiia. 46, 4–11 (2005)

    Google Scholar 

  38. Nolan, J., Batin, P.D., Andrews, R., Lindsay, S.J., Brooksby, P., Mullen, M., Baig, W., Flapan, A.D., Cowley, A., Prescott, R.J.: Prospective study of heart rate variability and mortality in chronic heart failure results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-Heart). Circulation. 98, 1510–1516 (1998)

    Article  CAS  PubMed  Google Scholar 

  39. Rector, T.S., Cohn, J.N.: Prognosis in congestive heart failure. Annu. Rev. Med. 45, 341–350 (1994)

    Article  CAS  PubMed  Google Scholar 

  40. Smilde, T.D.J., van Veldhuisen, D.J., van den Berg, M.P.: Prognostic value of heart rate variability and ventricular arrhythmias during 13-year follow-up in patients with mild to moderate heart failure. Clin. Res. Cardiol. 98, 233–239 (2009)

    Article  CAS  PubMed  Google Scholar 

  41. Malliani, A., Pagani, M., Lombardi, F., Cerutti, S.: Cardiovascular neural regulation explored in the frequency domain. Circulation. 84, 482–492 (1991)

    Article  CAS  PubMed  Google Scholar 

  42. Binkley, P.F., Nunziata, E., Haas, G.J., Nelson, S.D., Cody, R.J.: Parasympathetic withdrawal is an integral component of autonomic imbalance in congestive heart failure: demonstration in human subjects and verification in a paced canine model of ventricular failure. J. Am. Coll. Cardiol. 18, 464–472 (1991)

    Article  CAS  PubMed  Google Scholar 

  43. Poon, C.S., Merrill, C.K.: Decrease of cardiac chaos in congestive heart failure. Nature. 389, 492–495 (1997)

    Article  CAS  PubMed  Google Scholar 

  44. Woo, M.A., Stevenson, W.G., Moser, D.K., Middlekauff, H.R.: Complex heart rate variability and serum norepinephrine levels in patients with advanced heart failure. J. Am. Coll. Cardiol. 23, 565–569 (1994)

    Article  CAS  PubMed  Google Scholar 

  45. La Rovere, M.T., Pinna, G.D., Maestri, R., Mortara, A., Capomolla, S., Febo, O., Ferrari, R.,Franchini, M., Gnemmi, M., Opasich, C., Riccardi, P.G., Traversi, E., Cobelli, F.: Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 107, 565–570 (2003)

    Article  PubMed  Google Scholar 

  46. Hadase, M., Azuma, A., Zen, K., Asada, S., Kawasaki, T., Kamitani, T., Kawasaki, S., Sugihara, H., Matsubara, H.: Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure. Circ. J. 68, 343–347 (2004)

    Article  PubMed  Google Scholar 

  47. Guzzetti, S., Mezzetti, S., Magatelli, R., Porta, A., De Angelis, G., Rovelli, G., Malliani, A.: Linear and non-linear 24 h heart rate variability in chronic heart failure. Auton. Neurosci. 86, 114–119 (2000)

    Article  CAS  PubMed  Google Scholar 

  48. Mäkikallio, T.H., Huikuri, H.V., Hintze, U., Videbaek, J., Mitrani, R.D., Castellanos, A., Myerburg, R.J., Møller, M., DIAMOND Study Group: Fractal analysis and time- and frequency-domain measures of heart rate variability as predictors of mortality in patients with heart failure. Am. J. Cardiol. 87, 178–182 (2001)

    Article  PubMed  Google Scholar 

  49. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89, 068102 (2002)

    Article  PubMed  Google Scholar 

  50. Singh, J.P., Larson, M.G., Tsuji, H., Evans, J.C., O’Donnell, C.J., Levy, D.: Reduced heart rate variability and new-onset hypertension–insights into pathogenesis of hypertension: The Framingham Heart Study. Hypertension. 32, 293–297 (1998)

    Article  CAS  PubMed  Google Scholar 

  51. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 93, 1043–1065 (1996)

    Article  Google Scholar 

  52. Goldberger, J.J., Ahmed, M.W., Parker, M.A., Kadish, A.H.: Dissociation of heart rate variability from parasympathetic tone. Am. J. Phys. 266, H2152–H2157 (1994)

    CAS  Google Scholar 

  53. Liu, C.Y., Li, P., Zhao, L.N., Yang, Y., Liu, C.C.: Evaluation method for heart failure using RR sequence normalized histogram. In: Murray, A. (ed.) Computing in Cardiology, pp. 305–308. IEEE, Hangzhou (2011a)

    Google Scholar 

  54. Ho, K.K., Moody, G.B., Peng, C.K., Mietus, J.E., Larson, M.G., Levy, D., Goldberger, A.L.: Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation. 96, 842–848 (1997)

    Article  CAS  PubMed  Google Scholar 

  55. Liu, C.Y., Zhang, C.Q., Zhang, L., Zhao, L.N., L C, C., Wang, H.J.: Measuring synchronization in coupled simulation and coupled cardiovascular time series: a comparison of different cross entropy measures. Biomed. Signal. Process. Control. 21, 49–57 (2015)

    Article  Google Scholar 

  56. Liu, C.Y., Zhao, L.N.: Using Fuzzy Measure Entropy to improve the stability of traditional entropy measures. In: Murray, A. (ed.) Computing in cardiology, pp. 681–684. IEEE, Hangzhou (2011)

    Google Scholar 

  57. Zhao, L.N., Wei, S.S., Zhang, C.Q., Zhang, Y.T., Jiang, X.E., Liu, F., Liu, C.Y.: Determination of sample entropy and fuzzy measure entropy parameters for distinguishing congestive heart failure from normal sinus rhythm subjects. Entropy. 17, 6270–6288 (2015)

    Article  Google Scholar 

  58. Zhang, X.S., Zhu, Y.S., Thakor, N.V., Wang, Z.Z.: Detecting ventricular tachycardia and fibrillation by complexity measure. I.E.E.E. Trans. Biomed. Eng. 46, 548–555 (1999)

    Article  CAS  Google Scholar 

  59. Aboy, M., Hornero, R., Abasolo, D., Alvarez, D.: Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. I.E.E.E. Trans. Biomed. Eng. 53, 2282–2288 (2006)

    Article  Google Scholar 

  60. Yentes, J.M., Hunt, N., Schmid, K.K., Kaipust, J.P., McGrath, D., Stergiou, N.: The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41, 349–365 (2013)

    Article  PubMed  Google Scholar 

  61. Ruan, X.H., Liu, C.C., Liu, C.Y., Wang, X.P. and Li, P.: Automatic detection of atrial fibrillation using RR interval signal. In: 4th International Conference on Biomedical Engineering and Informatics: IEEE. pp. 644–647. (2011)

    Google Scholar 

Download references

Acknowledgement

We acknowledge and thank Dr. Charalampos Tsimenidis of Newcastle University for his helpful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengyu Liu or Alan Murray .

Editor information

Editors and Affiliations

A. Appendix

A. Appendix

1.1 A.1 RR Sequence Normalized Histogram

The general construction procedure for the RR sequence normalized histogram is summarized as follows [53]:

Given an RR sequence {RR 1, RR 2,…, RR N }, where N denotes the sequence length. The maximum (RR max) and minimum (RR min) values were firstly determined to calculate the range in the sequence:

$$ {RR}_{\text{range}}={RR}_{\max }-{RR}_{\min } $$
(11.5)

The threshold a = 0.1 × RR range is set and then the left-step parameter H l and right-step parameter H r can be calculated as

$$ {H}_l=\frac{RR_{\text{mean}}-\left({RR}_{\min }+\alpha \right)}{5} $$
(11.6)
$$ {H}_r=\frac{\left({RR}_{\max }-\alpha \right)-{RR}_{\text{mean}}}{5} $$
(11.7)

where RR mean denotes the mean value of the RR sequence. Based on these parameters, the RR i is divided into seven sections. Table 11.1 details the element division rules.

Table 11.1 Element division rules for constructing the RR sequence normalized histogram

The element percentage p i in each of the sections is calculated as follows:

$$ {p}_i=\frac{P_i}{N}\begin{array}{cc}\hfill \hfill & \hfill i=1,2,\cdots, 7\hfill \end{array} $$
(11.8)

In a rectangular coordinate system, the p i corresponding to the seven sections (i.e. L1, L2, L3, C, R3, R2 and R1) is drawn to form the normalized histogram. Three quantitative indices can be obtained from the normalized histogram. They are respectively named as center-edge ratio (CER), cumulative energy (CE) and range information entropy (RIEn) and are defined as [53]:

$$ \text{CER}=\frac{p_4}{p_1+{p}_2+{p}_6+{p}_7} $$
(11.9)
$$ \text{CE}=\sum_{i=1}^7{p}_i^2 $$
(11.10)
$$ \text{RIEn}=-{\sum}_{i=1}^7{p}_i\ast \ln {p}_i $$
(11.11)

1.2 A.2 Sample Entropy (SampEn)

The algorithm for SampEn is summarized as follows [29]: For the HRV series x(i), 1 ≤ iN, forms Nm + 1 vectors \( {X}_i^m=\left\{x(i),x\left(i+1\right),\cdots, x\left(i+m-1\right)\right\} \), 1 ≤ iNm + 1. The distance between two vectors \( {X}_i^m \) and \( {Y}_i^m \) is defined as: \( {d}_{i,j}^m=\underset{k=0}{\overset{m-1}{ \max }}\left|x\left(i+k\right)-x\left(j+k\right)\right| \). Denote \( {B}_i^m(r) \) the average number of j that meets \( {d}_{i,j}^m\le r \) for all 1 ≤ j ≤ N − m, and similarly define \( {A}_i^m(r) \) by \( {d}_{i,j}^{m+1} \). SampEn is then defined by:

$$ \text{SampEn}\left(m,r,N\right)=- \ln \left(\sum_{i=1}^{N-m}{A}_i^m(r)/\sum_{i=1}^{N-m}{B}_i^m(r)\right) $$
(11.12)

wherein the embedding dimension is usually set at m = 2 and the threshold at r = 0.2 × sd (sd indicates the standard deviation of the HRV series under-analyzed) [57, 60].

1.3 A.3 Fuzzy Measure Entropy (FuzzyMEn)

The calculation process of FuzzyMEn is summarized as follows [33, 56]:

For the RR or PTT segment x(i) (1 ≤ i ≤ N), firstly form the local vector sequences \( {XL}_i^m \) and global vector sequences \( {XG}_i^m \) respectively:

$$ \begin{array}{c} \hfill{\quad } {XL}_i^m=\left\{x(i),x\left(i+1\right),\cdots, x\left(i+m-1\right)\right\}-\overline{x}(i)\hfill \\[8pt] {XG}_i^m\!=\left\{x(i),x\left(i+1\right),\cdots, x\left(i+m-1\right)\right\}-\overline{x}\hfill \end{array}\kern1em 1\le i\le N-m $$
(11.13)

The vector \( {XL}_i^m \) represents m consecutive x(i) values but removing the local baseline \( \overline{x}(i) \), which is defined as:

$$ \overline{x}(i)=\frac{1}{m}\sum_{k=0}^{m-1}x\left(i+k\right)\kern1em 1\le i\le N-m $$
(11.14)

The vector \( {XG}_i^m \) also represents m consecutive x(i) values but removing the global mean value \( \overline{x} \) of the segment x(i), which is defined as:

$$ \overline{x}=\frac{1}{N}\sum_{i=1}^Nx(i) $$
(11.15)

Subsequently, the distance between the local vector sequences \( {XL}_i^m \) and \( {XL}_j^m \), and the distance between the global vector sequences \( {XG}_i^m \) and \( {XG}_j^m \) are computed respectively as:

$$ \begin{array}{l}{dL}_{i,j}^m=d\left[{XL}_i^m,{XL}_j^m\right]=\underset{k=0}{\overset{m-1}{ \max }}\left|\left(x\left(i+k\right)-\overline{x}(i)\right)-\left(x\left(j+k\right)-\overline{x}(j)\right)\right|\\[8pt] {}{dG}_{i,j}^m=d\left[{XG}_i^m,{XG}_j^m\right]=\underset{k=0}{\overset{m-1}{ \max }}\left|\left(x\left(i+k\right)-\overline{x}\right)-\left(x\left(j+k\right)-\overline{x}\right)\right|\end{array} $$
(11.16)

Given the parameters n L , r L , n G and r G , we calculate the similarity degree \( {DL}_{i,j}^m\left({n}_L,{r}_L\right) \) between the local vectors \( {XL}_i^m \) and \( {XL}_j^m \) by the fuzzy function \( \mu L\left({dL}_{i,j}^m,{n}_L,{r}_L\right) \), as well as the similarity degree \( {DG}_{i,j}^m\left({n}_G,{r}_G\right) \) between the global vectors \( {XG}_i^m \) and \( {XG}_j^m \) by the fuzzy function \( \mu G\left({dG}_{i,j}^m,{n}_G,{r}_G\right) \):

$$ \begin{array}{l}{DL}_{i,j}^m\left({n}_L,{r}_L\right)=\mu L\left({dL}_{i,j}^m,{n}_L,{r}_L\right)= \exp \left(-\frac{{\left({dL}_{i,j}^m\right)}^{n_L}}{r_L}\right)\\[8pt] {}{DG}_{i,j}^m\left({n}_G,{r}_G\right)=\mu G\left({dG}_{i,j}^m,{n}_G,{r}_G\right)= \exp \left(-\frac{{\left({dG}_{i,j}^m\right)}^{n_G}}{r_G}\right)\end{array} $$
(11.17)

We define the functions ϕL m(n L , r L ) and ϕG m(n G , r G ) as:

$$ \begin{array}{l}\phi {L}^m\left({n}_L,{r}_L\right)=\frac{1}{N-m}\sum_{i=1}^{N-m}\left(\frac{1}{N-m}\sum_{j=1}^{N-m}{DL}_{i,j}^m\left({n}_L,{r}_L\right)\right)\\[10pt] {}\phi {G}^m\left({n}_G,{r}_G\right)=\frac{1}{N-m}\sum_{i=1}^{N-m}\left(\frac{1}{N-m}\sum_{j=1}^{N-m}{DG}_{i,j}^m\left({n}_G,{r}_G\right)\right)\end{array} $$
(11.18)

Similarly, we define the function ϕL m + 1(n L , r L ) for m + 1 dimensional vectors \( {XL}_i^{m+1} \) and \( {XL}_j^{m+1} \) the function ϕG m + 1(n G , r G ) for m + 1 dimensional vectors \( {XG}_i^{m+1} \) and \( {YG}_j^{m+1} \):

$$ \begin{array}{l}\phi {L}^{m+1}\left({n}_L,{r}_L\right)=\frac{1}{N-m}\sum_{i=1}^{N-m}\left(\frac{1}{N-m}\sum_{j=1}^{N-m}{DL}_{i,j}^{m+1}\left({n}_L,{r}_L\right)\right)\\[10pt] {}\phi {G}^{m+1}\left({n}_L,{r}_L\right)=\frac{1}{N-m}\sum_{i=1}^{N-m}\left(\frac{1}{N-m}\sum_{j=1}^{N-m}{DG}_{i,j}^{m+1}\left({n}_G,{r}_G\right)\right)\end{array} $$
(11.19)

Then the fuzzy local measure entropy (FuzzyLMEn) and fuzzy global measure entropy (FuzzyGMEn) are computed as:

$$ \begin{array}{l}\text{FuzzyLMEn}\left(m,{n}_L,{r}_L,N\right)=- \ln \left(\phi {L}^{m+1}\left({n}_L,{r}_L\right)/\phi {L}^m\Big({n}_L,{r}_L\Big)\right)\\[8pt] {}\text{FuzzyGMEn}\left(m,{n}_G,{r}_G,N\right)=- \ln \left(\phi {G}^{m+1}\left({n}_G,{r}_G\right)/\phi {G}^m\Big({n}_G,{r}_G\Big)\right)\end{array} $$
(11.20)

Finally, the FuzzyMEn of RR segment x(i) is calculated as follows:

$$ \begin{aligned}[b] &\text{FuzzyMEn}\left(m,{n}_L,{r}_L,{n}_G,{r}_G,N\right)=\text{FuzzyLMEn}\left(m,{n}_L,{r}_L,N\right)\\[4pt] &\quad+\text{FuzzyGMEn}\left(m,{n}_G,{r}_G,N\right)\end{aligned} $$
(11.21)

In this study, the local similarity weight was set to n L = 3 and the global vector similarity weight was set to n G = 2. The local tolerance threshold r L was set equal to the global threshold r G, i.e., r L = r G = r. Hence, the formula (11.21) becomes:

$$ \text{FuzzyMEn}\left(m,r,N\right)=\text{FuzzyLMEn}\left(m,r,N\right)+\text{FuzzyGMEn}\left(m,r,N\right) $$
(11.22)

For both SampEn and FuzzyMEn, the entropy results were only based on the three parameters: the embedding dimension m, the tolerance threshold r and the RR segment length N.

1.4 A.4 Lempel-Ziv (LZ) Complexity

The calculation process of LZ complexity is summarized as follows [21, 59]:

  1. 1.

    For a binary symbolic sequence R = {s 1, s 2,…, s n }, let S and Q denote two strings, respectively, and SQ is the concatenation of S and Q, while the string SQπ is derived from SQ after its last character is deleted (π means the operation to delete the last character in the string). v(SQπ) denotes the vocabulary of all different substrings of SQπ. Initially, c(n) = 1, S = s 1, Q = s 2, and so SQπ = s 1;

  2. 2.

    In summary, S = s 1 s 2, …, s r , Q = s r+1, and so SQπ = s 1 s 2, …, s r ; if Q belongs to v(SQπ), then s r+1, that is, Q is a substring of SQπ, and so S does not change, and Q is updated to be s r+1 s r+2, and then judge if Q belongs to v(SQπ) or not. Repeat this process until Q does not belong to v(SQπ);

  3. 3.

    Now, Q = s r+1 s r+2, …, s r+i , which is not a substring of SQπ = s 1 s 2, …, s r s r+1,…, s r+i-1, so increase c(n) by one;

  4. 4.

    Thereafter, S is renewed to be S = s 1 s 2, …, s r+i , and Q = s r+i+1;

  5. 5.

    Then the procedures repeat until Q is the last character. At this time c(n) is the number of different substrings contained in R. For practical application, c(n) should be normalized. It has been proved that the upper bound of c(n) is

$$ c(n)<\frac{n}{\left(1-{\varepsilon}_n\right){ \log}_{\alpha }(n)}, $$
(11.23)

where ε n is a small quantity and ε n → 0 (n → ∞). In fact,

$$ \underset{n\to \infty }{ \lim }c(n)=b(n)=\frac{n}{{ \log}_{\alpha }(n)}. $$
(11.24)
  1. 6.

    Finally, LZ complexity is defined as the normalized output of c(n):

$$ C(n)=\frac{c(n)}{b(n)}, $$
(11.25)

where C(n) is the normalized LZ complexity, and denotes the arising rate of new patterns within the sequence.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Liu, C., Murray, A. (2017). Applications of Complexity Analysis in Clinical Heart Failure. In: Barbieri, R., Scilingo, E., Valenza, G. (eds) Complexity and Nonlinearity in Cardiovascular Signals. Springer, Cham. https://doi.org/10.1007/978-3-319-58709-7_11

Download citation

Publish with us

Policies and ethics