Skip to main content

Biochar’s Influence as a Soil Amendment for Essential Plant Nutrient Uptake

  • Chapter
  • First Online:
Essential Plant Nutrients

Abstract

Biochar has recently become an interesting option for soil management in terms of nutrients depleted lands, which is now emerging as an increasing global concern. Since biochar is derived from biomass, they are high in carbon and may contain a range of plant macro- and micronutrients. In addition, the physical microstructure of biochar may crucially influence the role of biochar on plant nutrient uptake determining access to mineralized elements by soil solution, microorganisms, and plant roots. The beneficial use of biochar as a soil amendment in terms of increased crop yield and improved soil quality has been reported. This book chapter extensively discusses the influential nutrients in biochars and their effects on plant nutrient uptake. Further, alteration of the mechanism of nutrient uptake via biochar modification and the effect on nutrient transformation in soil have been reviewed. Biochar impacts on nutrient uptake by different plants under different environmental and soil conditions are not fully understood yet. This chapter will provide insights for future research directions in order to establish an effective biochar-plant nutrient interaction.

Viraj Gunarathne and Sonia Mayakaduwa are co-first authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab, R., et al. (2003). Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytologist, 158(1), 219–224.

    Article  CAS  Google Scholar 

  • Agrafioti, E., et al. (2013). Biochar production by sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 72–78.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (2008). Micronutrient deficiencies in global crop production. Netherlands: Springer Science & Business Media.

    Book  Google Scholar 

  • Amonette, J. E., & Joseph, S. (2009). Characteristics of biochar: Microchemical properties. Biochar for Environmental Management: Science and Technology, 33.

    Google Scholar 

  • Angst, T. E., & Sohi, S. P. (2013). Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy, 5(2), 221–226.

    Article  CAS  Google Scholar 

  • Asai, H., et al. (2009). Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(1), 81–84.

    Article  Google Scholar 

  • Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 337(1–2), 1–18.

    Article  CAS  Google Scholar 

  • Bah, A., et al. (2014). Reducing runoff loss of applied nutrients in oil palm cultivation using controlled-release fertilizers. Advances in Agriculture, 2014, 285387.

    Article  Google Scholar 

  • Bailey, V. L., et al. (2011). Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biology and Biochemistry, 43(2), 296–301.

    Article  CAS  Google Scholar 

  • Bandara, T., et al. (2017a). Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil. Journal of Soils and Sediments, 17(3), 665–673.

    Article  CAS  Google Scholar 

  • Bandara, T., et al. (2017b). Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environmental Geochemistry and Health, 39(2), 391–401.

    Article  CAS  PubMed  Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282–2287.

    Article  CAS  PubMed  Google Scholar 

  • Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy, 5(2), 202–214.

    Article  CAS  Google Scholar 

  • Blackwell, P., Riethmuller, G., & Collins, M. (2009). Biochar application to soil. Biochar for Environmental Management: Science and Technology, 1, 207–226.

    Google Scholar 

  • Brantley, K. E., et al. (2015). Pine woodchip biochar impact on soil nutrient concentrations and corn yield in a silt loam in the Mid-Southern US. Agriculture, 5(1), 30–47.

    Article  CAS  Google Scholar 

  • Cao, C. T., et al. (2014). Biochar makes green roof substrates lighter and improves water supply to plants. Ecological Engineering, 71, 368–374.

    Article  Google Scholar 

  • Chan, K. Y., & Xu, Z. (2009). Biochar: Nutrient properties and their enhancement. Biochar for Environmental Management: Science and Technology, 1, 67–84.

    Google Scholar 

  • Chan, K., et al. (2008a). Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 45(8), 629–634.

    Article  Google Scholar 

  • Chan, K., et al. (2008b). Using poultry litter biochars as soil amendments. Soil Research, 46(5), 437–444.

    Article  Google Scholar 

  • Cheng, C.-H., Lehmann, J., & Engelhard, M. H. (2008). Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72(6), 1598–1610.

    Article  CAS  Google Scholar 

  • Chowdhury, M. A. H., et al. (2000). Microbial biomass, S mineralization and S uptake by African millet from soil amended with various composts. Soil Biology and Biochemistry, 32(6), 845–852.

    Article  CAS  Google Scholar 

  • Clough, T. J., et al. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275–293.

    Article  CAS  Google Scholar 

  • Dai, L., et al. (2015). Immobilization of phosphorus in cow manure during hydrothermal carbonization. Journal of Environmental Management, 157, 49–53.

    Article  CAS  PubMed  Google Scholar 

  • Dai, L., et al. (2016). Biochar: A potential route for recycling of phosphorus in agricultural residues. GCB Bioenergy, 8(5), 852–858.

    Article  CAS  Google Scholar 

  • De la Rosa, J., et al. (2011). Molecular composition of sedimentary humic acids from South West Iberian Peninsula: A multi-proxy approach. Organic Geochemistry, 42(7), 791–802.

    Article  Google Scholar 

  • Deb, D., et al. (2016). Variable effects of biochar and P solubilizing microbes on crop productivity in different soil conditions. Agroecology and Sustainable Food Systems, 40(2), 145–168.

    Article  Google Scholar 

  • DeLuca, T. H., et al. (2015). Biochar effects on soil nutrient transformations. Biochar for Environmental Management: Science and Technology, 2, 421–454.

    Google Scholar 

  • Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–248.

    Article  CAS  Google Scholar 

  • Ding, Y., et al. (2010). Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, & Soil Pollution, 213(1–4), 47–55.

    Article  CAS  Google Scholar 

  • Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. Biochar for Environmental Management: Science and Technology, 13–32.

    Google Scholar 

  • Du, Z., et al. (2014). Consecutive biochar application alters soil enzyme activities in the winter wheat–growing season. Soil Science, 179(2), 75–83.

    Article  CAS  Google Scholar 

  • Eghball, B., & Power, J. F. (1999). Composted and noncomposted manure application to conventional and no-tillage systems: Corn yield and nitrogen uptake. Agronomy Journal, 91(5), 819–825.

    Article  Google Scholar 

  • Esposito, N. C. (2013). Soil nutrient availability properties of biochar. MSc Thesis, Faculty of California Polytechnic State University, San Luis Obispo.

    Google Scholar 

  • Filiberto, D. M., & Gaunt, J. L. (2013). Practicality of biochar additions to enhance soil and crop productivity. Agriculture, 3(4), 715–725.

    Article  Google Scholar 

  • Fox, A., et al. (2014). The role of sulfur-and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne. FEMS Microbiology Ecology, 90(1), 78–91.

    Article  CAS  PubMed  Google Scholar 

  • Glaser, B., et al. (2000). Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry, 31(7), 669–678.

    Article  CAS  Google Scholar 

  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biology and Fertility of Soils, 35(4), 219–230.

    Article  CAS  Google Scholar 

  • Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1–15.

    Article  CAS  Google Scholar 

  • Haefele, S., et al. (2011). Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research, 121(3), 430–440.

    Article  Google Scholar 

  • Hossain, M. K., et al. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1), 223–228.

    Article  CAS  PubMed  Google Scholar 

  • Jayawardhana, Y. et al. (2016a) Detection of benzene in landfill leachate from Gohagoda dumpsite and its removal using municipal solid waste derived biochar.

    Google Scholar 

  • Jayawardhana, Y., et al. (2016b). Chapter 6: Municipal solid waste biochar for prevention of pollution from landfill leachate. In Environmental materials and waste (pp. 117–148). Amsterdam: Academic Press.

    Google Scholar 

  • Jin, Y., et al. (2016). Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere, 142, 128–135.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D., et al. (2012). Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry, 45, 113–124.

    Article  CAS  Google Scholar 

  • Karer, J., et al. (2013). Biochar application to temperate soils: Effects on nutrient uptake and crop yield under field conditions. Agricultural and Food Science, 22(4), 390–403.

    Google Scholar 

  • Kloss, S., et al. (2012). Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41(4), 990–1000.

    Article  CAS  PubMed  Google Scholar 

  • Kloss, S., et al. (2014). Biochar application to temperate soils: Effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 177(1), 3–15.

    Article  Google Scholar 

  • Knicker, H., et al. (1996). 13C-and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biology and Biochemistry, 28(8), 1053–1060.

    Article  CAS  Google Scholar 

  • Kookana, R. S., Yua, X.-Y., & Yinga, G.-G. (2010). “Black is the new green”: The blue shades of biochar, in 19th World Congress of Soil Science. Australia: Brisbane.

    Google Scholar 

  • Kuka, K., et al. (2013). Investigation of different amendments for dump reclamation in Northern Vietnam. Journal of Geochemical Exploration, 132, 41–53.

    Article  CAS  Google Scholar 

  • Laird, D. A., et al. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3), 443–449.

    Article  CAS  Google Scholar 

  • Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143–144.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: Science, technology and implementation. Routledge: Taylor & Francis.

    Google Scholar 

  • Lehmann, J., et al. (2003a). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant and Soil, 249(2), 343–357.

    Article  CAS  Google Scholar 

  • Lehmann, J., et al. (2003b). Soil fertility and production potential. In Amazonian dark earths (pp. 105–124). New York: Springer.

    Chapter  Google Scholar 

  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and Adaptation Strategies for Global Change, 11(2), 395–419.

    Article  Google Scholar 

  • Lehmann, J., et al. (2011). Biochar effects on soil biota–a review. Soil Biology and Biochemistry, 43(9), 1812–1836.

    Article  CAS  Google Scholar 

  • Lentz, R., & Ippolito, J. (2012). Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. Journal of Environmental Quality, 41(4), 1033–1043.

    Article  CAS  PubMed  Google Scholar 

  • Liang, B., et al. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719–1730.

    Article  CAS  Google Scholar 

  • Lima, I. M., & Marshall, W. E. (2005). Granular activated carbons from broiler manure: Physical, chemical and adsorptive properties. Bioresource Technology, 96(6), 699–706.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Liu, B., & Zhang, W. (2014). Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: Its application in soil amendment. Polish Journal of Environmental Studies, 23(1), 271–275.

    CAS  Google Scholar 

  • Ma, Y. L., & Matsunaka, T. (2013). Biochar derived from dairy cattle carcasses as an alternative source of phosphorus and amendment for soil acidity. Soil Science & Plant Nutrition, 59(4), 628–641.

    Article  CAS  Google Scholar 

  • Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250–258.

    Article  CAS  PubMed  Google Scholar 

  • Major, J., et al. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333(1–2), 117–128.

    Article  CAS  Google Scholar 

  • Manolikaki, I., & Diamadopoulos, E. (2016). Ryegrass yield and nutrient status after biochar application in two Mediterranean soils. Archives of Agronomy and Soil Science. doi:10.1080/03650340.2016.1267341.

  • Marris, E. (2006). Putting the carbon back: Black is the new green. Nature, 442(7103), 624–626.

    Article  CAS  PubMed  Google Scholar 

  • Masto, R. E., et al. (2013). Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena, 111, 64–71.

    Article  CAS  Google Scholar 

  • Masulili, A., Utomo, W. H., & Syechfani, M. (2010). Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science, 2(1), 39–47.

    Article  Google Scholar 

  • Mayakaduwa, S., et al. (2016a). Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Environmental Science and Pollution Research, 1–9.

    Google Scholar 

  • Mayakaduwa, S., et al. (2016b). Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal. Chemosphere, 144, 2516–2521.

    Article  CAS  PubMed  Google Scholar 

  • Meek, B. D., MacKenzie, A., & Grass, L. (1968). Effects of organic matter, flooding time, and temperature on the dissolution of iron and manganese from soil in situ. Soil Science Society of America Journal, 32(5), 634–638.

    Article  CAS  Google Scholar 

  • Naeem, M. A., et al. (2014). Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures. Pakistan Journal of Agricultural Sciences, 51(1), 75–82.

    Google Scholar 

  • Namgay, T., Singh, B., & Singh, B. P. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.) Soil Research, 48(7), 638–647.

    Article  CAS  Google Scholar 

  • Novak, J. M., et al. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174(2), 105–112.

    Article  CAS  Google Scholar 

  • Oram, N. J., et al. (2014). Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agriculture, Ecosystems & Environment, 191, 92–98.

    Article  CAS  Google Scholar 

  • Park, J. H., et al. (2011). Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. Journal of Hazardous Materials, 185(2), 549–574.

    Article  CAS  PubMed  Google Scholar 

  • Pietikäinen, J., Kiikkilä, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos, 89(2), 231–242.

    Article  Google Scholar 

  • Prendergast-Miller, M., Duvall, M., & Sohi, S. (2014). Biochar–root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science, 65(1), 173–185.

    Article  CAS  Google Scholar 

  • Puga, A., et al. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, 159, 86–93.

    Article  CAS  PubMed  Google Scholar 

  • Rajkovich, S., et al. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3), 271–284.

    Article  CAS  Google Scholar 

  • Rondon, M. A., et al. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43(6), 699–708.

    Article  Google Scholar 

  • Sanchez, P. A. (2002). Soil fertility and hunger in Africa. Science, 295(5562), 2019–2020.

    Article  CAS  PubMed  Google Scholar 

  • Shen, Q., et al. (2016). Can biochar increase the bioavailability of phosphorus? Journal of Soil Science and Plant Nutrition, 16(2), 268–286.

    Google Scholar 

  • Smernik, R. J., et al. (2002). Determination of T 1ρ H relaxation rates in charred and uncharred wood and consequences for NMR quantitation. Solid State Nuclear Magnetic Resonance, 22(1), 50–70.

    Article  CAS  PubMed  Google Scholar 

  • Smider, B., & Singh, B. (2014). Agronomic performance of a high ash biochar in two contrasting soils. Agriculture, Ecosystems & Environment, 191, 99–107.

    Article  CAS  Google Scholar 

  • Smith, M., & Tibbett, M. (2004). Nitrogen dynamics under Lolium perenne after a single application of three different sewage sludge types from the same treatment stream. Bioresource Technology, 91(3), 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Sohi, S., et al. (2009). Biochar, climate change and soil: A review to guide future research. CSIRO Land and Water Science Report, 5(09), 17–31.

    Google Scholar 

  • Sohi, S., et al. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47–82.

    Article  CAS  Google Scholar 

  • Somebroek, W. (1993). Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio, 22, 417–426.

    Google Scholar 

  • Steiner, C., et al. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291(1–2), 275–290.

    Article  CAS  Google Scholar 

  • Steiner, C., et al. (2008). Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 171(6), 893–899.

    Article  CAS  Google Scholar 

  • Sun, Y., et al. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574–578.

    Article  CAS  Google Scholar 

  • Slavich, P. G., Sinclair, K., Morris, S. G., Kimber, S. W. L., Downie, A., & Van Zwieten, L. (2013).Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant and Soil 366(1–2):213–227

    Google Scholar 

  • Tsai, W., Lee, M., & Chang, Y. (2006). Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. Journal of Analytical and Applied Pyrolysis, 76(1), 230–237.

    Article  CAS  Google Scholar 

  • Uzoma, K., et al. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27(2), 205–212.

    Article  Google Scholar 

  • Van Zwieten, L., et al. (2010a). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1–2), 235–246.

    Article  Google Scholar 

  • Van Zwieten, L., et al. (2010b). A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Soil Research, 48(7), 569–576.

    Article  Google Scholar 

  • Vithanage, M., et al. (2016). Potential of biochar and synthetic iron oxides for chromium immobilization in tannery waste polluted soil. Soil and Groundwater Pollution Remediation, 3(1), 45–58.

    Google Scholar 

  • Warnock, D. D., et al. (2007). Mycorrhizal responses to biochar in soil–concepts and mechanisms. Plant and Soil, 300(1–2), 9–20.

    Article  CAS  Google Scholar 

  • Withers, P. J., Clay, S. D., & Breeze, V. G. (2001). Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge. Journal of Environmental Quality, 30(1), 180–188.

    Article  CAS  PubMed  Google Scholar 

  • Yamato, M., et al. (2006). Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science & Plant Nutrition, 52(4), 489–495.

    Article  CAS  Google Scholar 

  • Yanai, Y., Toyota, K., & Okazaki, M. (2007). Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science & Plant Nutrition, 53(2), 181–188.

    Article  CAS  Google Scholar 

  • Zhang, A., et al. (2012). Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Research, 127, 153–160.

    Article  Google Scholar 

  • Zheng, H., et al. (2013). Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 206, 32–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meththika Vithanage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gunarathne, V., Mayakaduwa, S., Vithanage, M. (2017). Biochar’s Influence as a Soil Amendment for Essential Plant Nutrient Uptake. In: Naeem, M., Ansari, A., Gill, S. (eds) Essential Plant Nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_3

Download citation

Publish with us

Policies and ethics