Skip to main content

Embeddings, Slices and Foliations

  • Chapter
  • First Online:
The Problem of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 190))

  • 3573 Accesses

Abstract

Foliations of spacetime play major roles, firstly in dynamical and canonical formulations, and secondly in modelling the different possible fleets of observers within approaches in which spacetime is primary. Background Independent Physics is moreover to possess Foliation Independence. If this cannot be established, or fails, a Foliation Dependence Problem facet of the Problem of Time has been encountered. For classical general relativity itself, this has the status of a solved problem, due to Teitelboim’s demonstration that it follows from the Dirac algebroid formed by the Hamiltonian and momentum constraints.

In this chapter, we review the previous half-century’s significant works on foliations of spacetime, covering the theory in this chapter and some applications in the next. The theory involves more modern geometrical notions and formulations than Dirac and Arnowitt–Deser–Misner’s earlier works on canonical general relativity, as developed by e.g. Kuchař, Teitelboim and Isham. This approach places emphasis on spacetime primality followed by splitting spacetime. We also outline spaces of embeddings and of foliations, bubble time and many-fingered time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This can be formulated in terms of a fibre bundle \(\boldsymbol{\mathfrak{T}}(\boldsymbol{\mathfrak{R}}\mbox{iem}(\boldsymbol{\Sigma}))\): the tangent bundles space of extrinsic curvatures with over the base space \(\boldsymbol{\mathfrak{R}}\mbox{iem}(\boldsymbol{\Sigma})\). Another formulation involves using \(\mathbf{p}\) in place of \(\mathbf{K}\). In the latter case, the \(\underline{\boldsymbol{\mathfrak{s}}\mbox{ym}}\) involved is a space of symmetric 2-tensor densities and the corresponding fibre bundles space is \(\boldsymbol{\mathfrak{T}}^{*}(\boldsymbol{\mathfrak{R}}\mbox{iem}(\boldsymbol{\Sigma}))\).

  2. 2.

    They furthermore arm this with the topological structure that it inherits naturally as an open subset of \(\mathfrak{c}^{\infty }(\boldsymbol{\Sigma}, \mathfrak{m})\). This space can be considered [426] as a manifold in the sense of Fréchet (see Appendix H.2).

  3. 3.

    This notion of deformation indeed coincides with that of hypersurface deformation and of deformation algebroid.

References

  1. Anderson, E.: Minisuperspace model of machian resolution of problem of time. I. Isotropic case. Gen. Relativ. Gravit. 46, 1708 (2014). arXiv:1307.1916

    Article  ADS  MATH  Google Scholar 

  2. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962). arXiv:gr-qc/0405109

    Google Scholar 

  3. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vols. 1 and 2. Wiley, Chichester (1989)

    Book  MATH  Google Scholar 

  4. Dirac, P.A.M.: Quantum theory of localizable dynamical systems. Phys. Rev. 73, 1092 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University, New York (1964)

    MATH  Google Scholar 

  6. Friedrich, H., Nagy, G.: The initial boundary value problem for Einstein’s vacuum field equations. Commun. Math. Phys. 201, 619 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Gergely, L.Á., Kovacs, Z.: Gravitational dynamics in \(s + 1 + 1\) dimensions. Phys. Rev. D 72, 064015 (2005). gr-qc/0507020

    Article  ADS  MathSciNet  Google Scholar 

  8. Giulini, D.: The superspace of geometrodynamics. Gen. Relativ. Gravit. 41(785), 785 (2009). arXiv:0902.3923

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Giulini, D.: Dynamical and Hamiltonian formulation of general relativity. In: Ashtekar, A., Petkov, V. (eds.) Springer Handbook of Spacetime. Springer, Dordrecht (2014), chapter 17. arXiv:1505.01403

    Google Scholar 

  10. Gourgoulhon, E.: \(3+1\) Formalism in General Relativity: Bases of Numerical Relativity. Lecture Notes in Physics, vol. 846. Springer, Berlin (2012); An earlier version of this is available as gr-qc/0703035

    Book  MATH  Google Scholar 

  11. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7, 65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hojman, S.A., Kuchař, K.V., Teitelboim, C.: Geometrodynamics regained. Ann. Phys. (N. Y.) 96, 88 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Isham, C.J.: Aspects of Quantum Gravity. Lectures Given at Conference: C85–07-28.1 (Scottish Summer School 1985:0001), available on KEK archive

    Google Scholar 

  14. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories. Kluwer Academic, Dordrecht (1993). gr-qc/9210011

    Google Scholar 

  15. Isham, C.J., Kuchař, K.V.: Representations of space-time diffeomorphisms. 1. Canonical parametrized field theories. Ann. Phys. (N. Y.) 164, 288 (1985)

    Article  ADS  MATH  Google Scholar 

  16. Isham, C.J., Kuchař, K.V.: Representations of space-time diffeomorphisms. 2. Canonical geometrodynamics. Ann. Phys. (N. Y.) 164, 316 (1985)

    Article  ADS  MATH  Google Scholar 

  17. Kiefer, C.: Quantum Gravity. Clarendon, Oxford (2004)

    MATH  Google Scholar 

  18. Kuchař, K.V.: A bubble-time canonical formalism for geometrodynamics. J. Math. Phys. 13, 768 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kuchař, K.V.: Canonical quantization of gravity. In: Israel, W. (ed.) Relativity, Astrophysics and Cosmology. Reidel, Dordrecht (1973)

    Google Scholar 

  20. Kuchař, K.V.: Geometrodynamics regained: a Lagrangian approach. J. Math. Phys. 15, 708 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kuchař, K.V.: Geometry of hyperspace. I. J. Math. Phys. 17, 777 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kuchař, K.V.: Kinematics of tensor fields in hyperspace. II. J. Math. Phys. 17, 792 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kuchař, K.V.: Dynamics of tensor fields in hyperspace. III. J. Math. Phys. 17, 801 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. Kuchař, K.V.: Geometrodynamics with tensor sources IV. J. Math. Phys. 18, 1589 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  25. Kuchař, K.V.: Canonical methods of quantization. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity 2: A Second Oxford Symposium. Clarendon, Oxford (1981)

    Google Scholar 

  26. Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics. World Scientific, Singapore (1992); Reprinted as Int. J. Mod. Phys. Proc. Suppl. D 20, 3 (2011)

    Google Scholar 

  27. Lee, J.M.: Introduction to Smooth Manifolds, 2nd edn. Springer, New York (2013)

    MATH  Google Scholar 

  28. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  29. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010)

    Google Scholar 

  30. Schouten, J.A.: Ricci Calculus. Springer, Berlin (1954)

    Book  MATH  Google Scholar 

  31. Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C.A., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  32. Stewart, J.M.: Advanced General Relativity. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  33. Teitelboim, C.: The Hamiltonian structure of two-dimensional space-time and its relation with the conformal anomaly. In: Christensen, S.M. (ed.) Quantum Theory of Gravity. Hilger, Bristol (1984)

    Google Scholar 

  34. Tomonaga, S.: On a relativistically invariant formulation of the quantum theory of wave fields. Prog. Theor. Phys. 1, 27 (1946)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Vargas Moniz, P.: Quantum Cosmology—The Supersymmetric Perspective, vols. 1 and 2. Springer, Berlin (2010)

    MATH  Google Scholar 

  36. Weiss, P.: On the Hamilton–Jacobi theory and quantization of a dynamical continuum. Proc. R. Soc. A 169, 102 (1939)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, E. (2017). Embeddings, Slices and Foliations. In: The Problem of Time. Fundamental Theories of Physics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-58848-3_31

Download citation

Publish with us

Policies and ethics