Skip to main content

Introduction to Protein Crystallization

  • Chapter
  • First Online:
Data Analytics for Protein Crystallization

Part of the book series: Computational Biology ((COBO,volume 25))

  • 996 Accesses

Abstract

This chapter reviews the basics of the protein crystallization process. As amply proven by the protein structure initiative, protein crystallization can be carried out without any basic knowledge about the specific protein or how it behaves in solution. However, when the goal is not just processing as many proteins as can be produced, but is directed toward a better understanding of a specific biological moiety, a better understanding of what is being done, what one is observing, and how they all relate to the crystal nucleation and growth process is an invaluable aid in translating the observed screening results to a successful outcome. Informed observation is a key component to increased success. Similarly, there are a plethora of approaches that can be taken to screening for crystals, and knowing the strengths and weaknesses of each is key to matching them to the immediate goals to be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abergel, C., Moulard, M., Moreau, H., Loret, E., Cambillau, C., & Fontecilla–Camps, J. C. (1991). Systematic use of the incomplete factorial approach in the design of protein crystallization experiments. Journal of Biological Chemistry, 266(30), 20131–20138.

    Google Scholar 

  2. Ai, X., & Caffrey, M. (2000). Membrane protein crystallization in lipidic mesophases: Detergent effects. Biophysical Journal, 79(1), 394–405.

    Article  Google Scholar 

  3. Bell, J. B., Jones, M. E., & Carter, C. W. (1991). Crystallization of yeast orotidine 5\(^{\prime }\)-monophosphate decarboxylase complexed with 1-(5\(^{\prime }\)-phospho-\(\beta \)-D-ribofuranosyl) barbituric acid. Proteins: Structure, Function, and Bioinformatics, 9(2), 143–151.

    Article  Google Scholar 

  4. Betts, L., Frick, L., Wolfenden, R., & Carter, C. W. (1989). Incomplete factorial search for conditions leading to high quality crystals of Escherichia coli cytidine deaminase complexed to a transition state analog inhibitor. Journal of Biological Chemistry, 264(12), 6737–6740.

    Google Scholar 

  5. Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A., Doak, R. B., Weierstall, U., DePonte, D. P., Steinbrener, J., Shoeman, R. L., Messerschmidt, M., Barty, A., White, T. A., Kassemeyer, S., Kirian, R. A., Seibert, M. M., Montanez, P. A., Kenney, C., Herbst, R., Hart, P., Pines, J., Haller, G., Gruner, S. M., Philipp, H. T., Tate, M. W., Hromalik, M., Koerner, L. J., Bakel, N. v., Morse, J., Ghonsalves, W., Arnlund, D., Bogan, M. J., Caleman, C., Fromme, R., Hampton, C. Y., Hunter, M. S., Johansson, L. C., Katona, G., Kupitz, C., Liang, M., Martin, A. V., Nass, K., Redecke, L., Stellato, F., Timneanu, N., Wang, D., Zatsepin, N. A., Schafer, D., Defever, J., Neutze, R., Fromme, P., Spence, J. C. H., Chapman, H. N., & Schlichting, I. (2012). High-Resolution protein structure determination by serial femtosecond crystallography. Science 337(6092), 362–364.

    Google Scholar 

  6. Carter, C. W. (1997). [5] Response surface methods for optimizing and improving reproducibility of crystal growth. Methods in Enzymology, 276, 74–99.

    Article  Google Scholar 

  7. Carter, C. W., Baldwin, E. T., & Frick, L. (1988). Statistical design of experiments for protein crystal growth and the use of a precrystallization assay. Journal of Crystal Growth, 90(1–3), 60–73.

    Google Scholar 

  8. Carter, C. W., & Carter, C. W. (1979). Protein crystallization using incomplete factorial experiments. Journal of Biological Chemistry, 254(23), 12219–12223.

    Google Scholar 

  9. DeLucas, L. J., Bray, T. L., Nagy, L., McCombs, D., Chernov, N., Hamrick, D., et al. (2003). Efficient protein crystallization. Journal of Structural Biology, 142(1), 188–206.

    Article  Google Scholar 

  10. Dierks, K., Meyer, A., Oberthü, D., Rapp, G., Einspahr, H., & Betzel, C. (2010). Efficient UV detection of protein crystals enabled by fluorescence excitation at wavelengths longer than 300 nm. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 66(4), 478–484.

    Google Scholar 

  11. Forsythe, E., Achari, A., & Pusey, M. L. (2006). Trace fluorescent labeling for high-throughput crystallography. Acta Crystallographica Section D: Biological Crystallography, 62(3), 339–346.

    Article  Google Scholar 

  12. García-Ruiz, J. M. The Uses of crystal growth in gels and other diffusing-reacting systems. Key Engineering Materials 58 (1991), 87–106.

    Google Scholar 

  13. Gavira, J. A., Toh, D., Lopéz–Jaramillo, J., & García–Ruiz, J. M. (2002). Ab initio crystallographic structure determination of insulin from protein to electron density without crystal handling. Acta Crystallographica Section D: Biological Crystallography, 58(7), 1147–1154.

    Article  Google Scholar 

  14. George, A., & Wilson, W. W. (1994). Predicting protein crystallization from a dilute solution property. Acta Crystallographica Section D: Biological Crystallography, 50(4), 361–365.

    Article  Google Scholar 

  15. Groves, M. R., Müller, I. B., Kreplin, X., & Müller-Dieckmann, J. (2007). A method for the general identification of protein crystals in crystallization experiments using a noncovalent fluorescent dye. Acta Crystallographica Section D: Biological Crystallography, 63(4), 526–535.

    Article  Google Scholar 

  16. Hill, T. L. (1959). Theory of solutions. II. osmotic pressure virial expansion and light scattering in two component solutions. The Journal of Chemical Physics, 30(1), 93–97.

    Article  Google Scholar 

  17. Jancarik, J., & Kim, S.-H. (1991). Sparse matrix sampling: A screening method for crystallization of proteins. Journal of Applied Crystallography, 24(4), 409–411.

    Article  Google Scholar 

  18. Judge, R. A., Johns, M. R., & White, E. T. (1995). Protein purification by bulk crystallization: The recovery of ovalbumin. Biotechnology and Bioengineering, 48(4), 316–323.

    Article  Google Scholar 

  19. Judge, R. A., Swift, K., & González, C. (2005). An ultraviolet fluorescence-based method for identifying and distinguishing protein crystals. Acta Crystallographica Section D: Biological Crystallography, 61(1), 60–66.

    Article  Google Scholar 

  20. Kissick, D. J., Wanapun, D., & Simpson, G. J. (2011). Second-order nonlinear optical imaging of chiral crystals. Annual Review of Analytical Chemistry, 4(1), 419–437.

    Article  Google Scholar 

  21. Luft, J. R., Collins, R. J., Fehrman, N. A., Lauricella, A. M., Veatch, C. K., & DeTitta, G. T. (2003). A deliberate approach to screening for initial crystallization conditions of biological macromolecules. Journal of Structural Biology, 142(1), 170–179.

    Article  Google Scholar 

  22. Lukk, T., Gillilan, R. E., Szebenyi, D. M. E., & Zipfel, W. R. (2016). A visible-light-excited fluorescence method for imaging protein crystals without added dyes. Journal of Applied Crystallography, 49(1), 234–240.

    Article  Google Scholar 

  23. Madden, J. T., DeWalt, E. L., & Simpson, G. J. (2011). Two-photon excited UV fluorescence for protein crystal detection. Acta Crystallographica Section D: Biological Crystallography, 67(10), 839–846.

    Article  Google Scholar 

  24. Mason, R. L., Gunst, R. F., & Hess, J. L. (2003). Statistical Design and Analysis of Experiments: With Applications to Engineering and Science (2nd ed.)., Wiley series in probability and statistics New York: Wiley.

    Book  MATH  Google Scholar 

  25. Myers, R., & Montgomery, D. (2009). Response Surface Methdology: Product and Process Optimization Using Designed Experiments. 1995 (4th ed.). New York: Wiley.

    MATH  Google Scholar 

  26. Nagel, R. M., Luft, J. R., & Snell, E. H. (2008). AutoSherlock: A program for effective crystallization data analysis. Journal of Applied Crystallography, 41(6), 1173–1176.

    Article  Google Scholar 

  27. Padayatti, P., Palczewska, G., Sun, W., Palczewski, K., & Salom, D. (2012). Imaging of protein crystals with two-photon microscopy. Biochemistry, 51(8), 1625–1637.

    Article  Google Scholar 

  28. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., & Landau, E. M. (1997). X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science, 277(5332), 1676–1681.

    Article  Google Scholar 

  29. Pusey, M., Barcena, J., Morris, M., Singhal, A., Yuan, Q., & Ng, J. (2015). Trace fluorescent labeling for protein crystallization. Acta Crystallographica Section F: Structural Biology Communications, 71(7), 806–814.

    Google Scholar 

  30. Rupp, B. (2015). Origin and use of crystallization phase diagrams. Acta Crystallographica Section F: Structural Biology Communications, 71(3), 247–260.

    Google Scholar 

  31. Saijo, S., Sato, T., Tanaka, N., Ichiyanagi, A., Sugano, Y., & Shoda, M. (2005). Precipitation diagram and optimization of crystallization conditions at low ionic strength for deglycosylated dye-decolorizing peroxidase from a basidiomycete. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 61(8), 729–732.

    Google Scholar 

  32. Saridakis, E. (2011). Novel genetic algorithm-inspired concept for macromolecular crystal optimization. Crystal Growth and Design, 11(7), 2993–2998.

    Article  Google Scholar 

  33. Sedzik, J. (1994). Design: A guide to protein crystallization experiments. Archives of Biochemistry and Biophysics, 308(2), 342–348.

    Article  Google Scholar 

  34. Sedzik, J. (1995). Regression analysis of factorially designed trials – a logical approach to protein crystallization. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1251(2), 177–185.

    Google Scholar 

  35. Segelke, B. W. (2001). Efficiency analysis of sampling protocols used in protein crystallization screening. Journal of Crystal Growth, 232(1), 553–562.

    Article  Google Scholar 

  36. Snell, E. H., Nagel, R. M., Wojtaszcyk, A., O’Neill, H., Wolfley, J. L., & Luft, J. R. (2008). The application and use of chemical space mapping to interpret crystallization screening results. Acta Crystallographica Section D: Biological Crystallography, 64(12), 1240–1249.

    Article  Google Scholar 

  37. Stura, E. A., Nemerow, G. R., & Wilson, I. A. (1992). Strategies in the crystallization of glycoproteins and protein complexes. Journal of Crystal Growth, 122(1), 273–285.

    Article  Google Scholar 

  38. Tran, T. T., Sorel, I., & Lewit-Bentley, A. (2004). Statistical experimental design of protein crystallization screening revisited. Acta Crystallographica Section D: Biological Crystallography, 60(9), 1562–1568.

    Article  Google Scholar 

  39. Walter, T. S., Meier, C., Assenberg, R., Au, K.-F., Ren, J., Verma, A., et al. (2006). Lysine methylation as a routine rescue strategy for protein crystallization. Structure, 14(11), 1617–1622.

    Article  Google Scholar 

  40. Wills, P. R., Comper, W. D., & Winzor, D. J. (1993). Thermodynamic nonideality in macromolecular solutions: Interpretation of virial coefficients. Archives of Biochemistry and Biophysics, 300(1), 206–212.

    Article  Google Scholar 

  41. Wills, P. R., Jacobsen, M. P., & Winzor, D. J. (2000). Analysis of sedimentation equilibrium distributions reflecting nonideal macromolecular associations. Biophysical Journal, 79(4), 2178–2187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc L. Pusey .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pusey, M.L., Aygün, R.S. (2017). Introduction to Protein Crystallization. In: Data Analytics for Protein Crystallization. Computational Biology, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-58937-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58937-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58936-7

  • Online ISBN: 978-3-319-58937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics