Skip to main content

Adhesion Enhancement of a Gel-Elastomer Interface by Shape Complementarity

  • Chapter
  • First Online:
Bio-inspired Structured Adhesives

Part of the book series: Biologically-Inspired Systems ((BISY,volume 9))

Abstract

Organogel samples molded against structured Polydimethylsiloxane (PDMS) surfaces consisting of periodic ridge-valley and hexagonally packed fibrillar array patterns were separated employing a wedge adhesion test. We found that the complementary gel-elastomer interface can be up to 5 times stronger than a control, non-structured, gel-elastomer interface. The higher the surface feature (ridge/fibril) and the smaller the spacing between the features, the more is the energy required to separate the interface. The principal mechanisms for enhanced adhesion are crack-trapping by the structured interface and friction between interpenetrating features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Jagota, C.-Y. Hui, Mater. Sci. Eng. Rep. 72, 253 (2011)

    Google Scholar 

  2. B. Bhushan, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1445 (2009)

    Article  Google Scholar 

  3. K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Nature 405, 681 (2000)

    Article  Google Scholar 

  4. M. Scherge, S.N. Gorb, Biological Micro-and Nanotribology: Nature’s Solutions (Springer, New York, 2001)

    Book  Google Scholar 

  5. E. Arzt, S. Gorb, R. Spolenak, Proc. Natl. Acad. Sci. 100, 10603 (2003)

    Article  Google Scholar 

  6. M. Kamperman, E. Kroner, A. del Campo, R.M. McMeeking, E. Arzt, Adv. Eng. Mater. 12, 335 (2010)

    Article  Google Scholar 

  7. S. Kim, B. Aksak, M. Sitti, Appl. Phys. Lett. 91, 221913 (2007)

    Article  Google Scholar 

  8. N.J. Glassmaker, A. Jagota, C.Y. Hui, W.L. Noderer, M.K. Chaudhury, Proc. Natl. Acad. Sci. USA 104, 10786 (2007)

    Article  Google Scholar 

  9. J.Y. Chung, M.K. Chaudhury, J. R. Soc. Interface 2, 55 (2005)

    Article  Google Scholar 

  10. A. Majumder, A. Ghatak, A. Sharma, Science 318, 258 (2007)

    Article  Google Scholar 

  11. L. Ge, S. Sethi, L. Ci, P.M. Ajayan, A. Dhinojwala, Proc. Natl. Acad. Sci. USA 104, 10792 (2007)

    Article  Google Scholar 

  12. L. Xue, J. Iturri, M. Kappl, H.-J.R. Butt, A.N. del Campo, Langmuir 30, 11175 (2014)

    Article  Google Scholar 

  13. D.M. Drotlef, L. Stepien, M. Kappl, W.J.P. Barnes, H.J. Butt, A. del Campo, Adv. Funct. Mater. 23, 1137 (2013)

    Article  Google Scholar 

  14. J. Iturri, L. Xue, M. Kappl, L. García-Fernández, W.J.P. Barnes, H.J. Butt, A. del Campo, Adv. Funct. Mater. 25, 1498 (2015)

    Article  Google Scholar 

  15. G. de Mestral, in www.uspto.gov, edited by USPTO (Velcro S.A. (Soulie, Nyon, CH), USA, 1973)

  16. A.J. Bruce Alberts, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edn. (Garland Science (Taylor & Francis Group), New York, 2002)

    Google Scholar 

  17. S.N. Gorb, Proc. R. Soc. Lond. Ser. B Biol. Sci. 266, 525 (1999)

    Article  Google Scholar 

  18. S. Vajpayee, K. Khare, S. Yang, C.-Y. Hui, A. Jagota, Adv. Funct. Mater. 21, 547 (2011)

    Article  Google Scholar 

  19. H. Shahsavan, B. Zhao, Langmuir 27, 7732 (2011)

    Article  Google Scholar 

  20. M. Lamblet, E. Verneuil, T. Vilmin, A. Buguin, P. Silberzan, L. Léger, Langmuir 23, 6966 (2007)

    Article  Google Scholar 

  21. C. Jin, A. Jagota, C.Y. Hui. “Structure and Energetics of Dislocations at Micro‐Structured Complementary Interfaces Govern Adhesion.” Adv. Funct. Mater. 23, 27 (2013): 3453–3462.

    Google Scholar 

  22. A.K. Singh, Y. Bai, N. Nadermann, A. Jagota, C.-Y. Hui, Langmuir 28, 4313 (2012)

    Article  Google Scholar 

  23. D. Paretkar, X. Xu, C.-Y. Hui, A. Jagota, Soft Matter 10, 4084 (2014)

    Article  Google Scholar 

  24. S. Vajpayee, C.Y. Hui, A. Jagota, Langmuir 24, 9401 (2008)

    Article  Google Scholar 

  25. M. Kanninen, Int. J. Fract. 9, 83 (1973)

    Google Scholar 

  26. H. Gao, J.R. Rice, J. Appl. Mech. 56, 828 (1989)

    Article  Google Scholar 

  27. A. Bower, M. Ortiz, J. Mech. Phys. Solids 39, 815 (1991)

    Article  Google Scholar 

  28. S. Xia, L. Ponson, G. Ravichandran, K. Bhattacharya, J. Mech. Phys. Solids 83, 88 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the U.S. Department of Energy, Office of Basic energy Sciences, Division of Materials Sciences and Engineering under award DEFG02-07ER46463.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Jagota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Paretkar, D., Malhotra, P., Hui, CY., Jagota, A. (2017). Adhesion Enhancement of a Gel-Elastomer Interface by Shape Complementarity. In: Heepe, L., Xue, L., Gorb, S. (eds) Bio-inspired Structured Adhesives. Biologically-Inspired Systems, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-59114-8_14

Download citation

Publish with us

Policies and ethics