Skip to main content

Adaptive Submodular Ranking

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10328))

Abstract

We study a general stochastic ranking problem where an algorithm needs to adaptively select a sequence of elements so as to “cover” a random scenario (drawn from a known distribution) at minimum expected cost. The coverage of each scenario is captured by an individual submodular function, where the scenario is said to be covered when its function value goes above some threshold. We obtain a logarithmic factor approximation algorithm for this adaptive ranking problem, which is the best possible (unless \(P=NP\)). This problem unifies and generalizes many previously studied problems with applications in search ranking and active learning. The approximation ratio of our algorithm either matches or improves the best result known in each of these special cases. Moreover, our algorithm is simple to state and implement. We also present preliminary experimental results on a real data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, M., Heeringa, B.: Approximating optimal binary decision trees. Algorithmica 62(3–4), 1112–1121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azar, Y., Gamzu, I.: Ranking with submodular valuations. In: SODA, pp. 1070–1079 (2011)

    Google Scholar 

  3. Azar, Y., Gamzu, I., Yin, X.: Multiple intents re-ranking. In: STOC, pp. 669–678 (2009)

    Google Scholar 

  4. Bansal, N., Gupta, A., Krishnaswamy, R.: A constant factor approximation algorithm for generalized min-sum set cover. In: SODA, pp. 1539–1545 (2010)

    Google Scholar 

  5. Bansal, N., Gupta, A., Li, J., Mestre, J., Nagarajan, V., Rudra, A.: When LP is the cure for your matching woes: improved bounds for stochastic matchings. Algorithmica 63(4), 733–762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellala, G., Bhavnani, S.K., Scott, C.: Group-based active query selection for rapid diagnosis in time-critical situations. IEEE Trans. Inf. Theor. 58(1), 459–478 (2012)

    Article  MathSciNet  Google Scholar 

  7. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, W.R., Raghavan, P., Sudan, M.: The minimum latency problem. In: STOC, pp. 163–171 (1994)

    Google Scholar 

  8. Chakaravarthy, V.T., Pandit, V., Roy, S., Awasthi, P., Mohania, M.K.: Decision trees for entity identification: approximation algorithms and hardness results. ACM Trans. Algorithms 7(2), 15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chaudhuri, K., Godfrey, B., Rao, S., Talwar, K.: Paths, trees, and minimum latency tours. In: FOCS, pp. 36–45 (2003)

    Google Scholar 

  10. Cicalese, F., Laber, E.S., Saettler, A.M.: Diagnosis determination: decision trees optimizing simultaneously worst and expected testing cost. In: ICML, pp. 414–422 (2014)

    Google Scholar 

  11. Dasgupta, S.: Analysis of a greedy active learning strategy. In: NIPS (2004)

    Google Scholar 

  12. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack problem: the benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active learning and stochastic optimization. J. Artif. Intell. Res. 42, 427–486 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Golovin, D., Krause, A., Ray, D.: Near-optimal Bayesian active learning with noisy observations. In: NIPS, pp. 766–774 (2010)

    Google Scholar 

  16. Grammel, N., Hellerstein, L., Kletenik, D., Lin, P.: Scenario submodular cover. CoRR abs/1603.03158 (2016). (to appear in WAOA 2016)

    Google Scholar 

  17. Guillory, A., Bilmes, J.: Average-case active learning with costs. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 141–155. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04414-4_15

    Chapter  Google Scholar 

  18. Gupta, A., Nagarajan, V., Ravi, R.: Approximation algorithms for optimal decision trees and adaptive TSP problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 690–701. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14165-2_58

    Chapter  Google Scholar 

  19. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2015)

    Google Scholar 

  20. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is \(NP\)-complete. Inf. Process. Lett. 5(1), 15–17 (1976/1977)

    Google Scholar 

  21. Im, S., Nagarajan, V., Zwaan, R.: Minimum latency submodular cover. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 485–497. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31594-7_41

    Chapter  Google Scholar 

  22. Im, S., Sviridenko, M., van der Zwaan, R.: Preemptive and non-preemptive generalized min sum set cover. Math. Program. 145(1–2), 377–401 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Javdani, S., Chen, Y., Karbasi, A., Krause, A., Bagnell, D., Srinivasa, S.S.: Near optimal bayesian active learning for decision making. In: AISTATS, pp. 430–438 (2014)

    Google Scholar 

  24. Kosaraju, S.R., Przytycka, T.M., Borgstrom, R.: On an optimal split tree problem. In: Dehne, F., Sack, J.-R., Gupta, A., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 157–168. Springer, Heidelberg (1999). doi:10.1007/3-540-48447-7_17

    Chapter  Google Scholar 

  25. Navidi, F., Kambadur, P., Nagarajan, V.: Adaptive submodular ranking. arXiv preprint arXiv:1606.01530 (2016)

  26. Skutella, M., Williamson, D.P.: A note on the generalized min-sum set cover problem. Oper. Res. Lett. 39(6), 433–436 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wolsey, L.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of V. Nagarajan’s work was done while visiting the Simons institute for theoretical computer science (UC Berkeley). The authors thank Lisa Hellerstein for a clarification on [16] regarding the OR construction of submodular functions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Navidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kambadur, P., Nagarajan, V., Navidi, F. (2017). Adaptive Submodular Ranking. In: Eisenbrand, F., Koenemann, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2017. Lecture Notes in Computer Science(), vol 10328. Springer, Cham. https://doi.org/10.1007/978-3-319-59250-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59250-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59249-7

  • Online ISBN: 978-3-319-59250-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics