Skip to main content

Molecular Mapping of Disease Resistance Genes

  • Chapter
  • First Online:
The Radish Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Radish is susceptible to all kinds of diseases, and to breed cultivars with high levels of diseases resistance is important for reducing chemical sprays in order to avoid effect on environment. In this chapter, a summary is given on genetic studies of resistance genes in radish. First, we provide an overview of fungi, virus, bacteria, and nematode disease-related QTL studies which were published in recent years and also discuss about the candidate genes/orthologous that were found by comparative QTL/gene mapping on disease resistance loci of Brassicaceae family. Finally, we suggest a few strategies to identify and utilize the resistance genes in radish breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaba M, Kaneko Y, Hatakeyama K, Ishida M, Bang SW, Matsuzawa Y (2009) Identification and evaluation of clubroot resistance of radish chromosome using a Brassica napus-Raphanus sativus monosomic addition line. Breed Sci 59:203–206

    Article  Google Scholar 

  • Armstrong GM, Armstrong JK (1952) Physiologic races of Fusaria causing wilts of the Cruciferae. Phytopathology 42:255–257

    Google Scholar 

  • Bain DC (1952) Reaction of Brassica seedlings to black rot. Phytopathology 42:497–500

    Google Scholar 

  • Bosland PW, Williams PH (1987) An evaluation of Fusarium oxysporum from crucifers based on pathogenicity, isozyme polymorphism, vegetative compatibility, and geographic origin. Can J Bot 65:2067–2073

    Article  Google Scholar 

  • Budahn H, Schrader O, Peterka H (2008) Development of a complete set of disomic rape-radish chromosome-addition lines. Euphytica 162:117–128

    Article  CAS  Google Scholar 

  • Budahn H, Peterka H, Mousa MA, Ding Y, Zhang S, Li J (2009) Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii). Theor Appl Genet 118:775–782

    Article  PubMed  Google Scholar 

  • Camargo LEA, Williams PH, Osborn TC (1995) Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv. campestris in the field and greenhouse. Phytopathology 85:1296–1300

    Article  Google Scholar 

  • Cheng D (2013) Cloning of turnip mosaic virus resistance related genes and development of trap marker in radish (Raphanus sativus L.). Dissertation, Nanjing Agricultural University

    Google Scholar 

  • Cole SJ, Diener AC (2013) Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f.sp. matthioli. New Phytol 200:172–184

    Article  CAS  PubMed  Google Scholar 

  • Constantinescu O, Fatehi J (2002) Peronospora-like fungi (Chromista, Peronosporales) parasitic on Brassicaceae and related hosts. Nova Hedwigia 74:291–338

    Article  Google Scholar 

  • Diener AC, Ausubel FM (2005) RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan Y (2014) Genetic analysis and QTL fine mapping of the resistance to black rot in radish (Raphanus sativus L.) germplasm. Dissertation, Chinese Academy of Agricultural Sciences

    Google Scholar 

  • Farinho M, Coelho P, Carlier J, Svetleva D, Monteiro A, Leitao J (2004) Mapping of a locus for adult plant resistance to downy mildew in broccoli (Brassica oleracea convar. italica). Theor Appl Genet 109:1392–1398

    Article  CAS  PubMed  Google Scholar 

  • Farnham MW, Wang M, Thomas CE (2002) A single dominant gene for downy mildew resistance in broccoli. Euphytica 128:405–407

    Article  CAS  Google Scholar 

  • Fujiwara A, Inukai T, Kim BM, Masuta C (2011) Combinations of a host resistance gene and the CI gene of turnip mosaic virus differentially regulate symptom expression in Brassica rapa cultivars. Arch Virol 156:1575–1581

    Article  CAS  PubMed  Google Scholar 

  • Garibaldi A, Gilardi G, Gullino ML (2006) Evidence for an expanded host range of Fusarium oxysporum f. sp. raphani. Phytoparasitica 34:115–121

    Article  Google Scholar 

  • Hirai M, Harada T, Kubo N, Tsukada M, Suwabe K, Matsumoto S (2004) A novel locus for clubroot resistance in Brassica rapa and its linkage markers. Theor Appl Genet 108:639–643

    Article  CAS  PubMed  Google Scholar 

  • Hughes S, Hunter P, Sharpe A, Kearsey M, Lydiate D, Walsh J (2003) Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theor Appl Genet 107:1169–1173

    Article  CAS  PubMed  Google Scholar 

  • Ingram DS, Tommerup IC (1972) The life history of Plasmodiophora brassicae Woron. Proc R Soc Lond Ser B 180:103–112

    Article  Google Scholar 

  • Jenner CE, Tomimura K, Ohshima K, Hughes SL, Walsh JA (2002) Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50–59

    Article  CAS  PubMed  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamei A, Tsuro M, Kubo N, Hayashi T, Wang N, Fujimura T, Hirai M (2010) QTL mapping of clubroot resistance in radish (Raphanus sativus L.). Theor Appl Genet 120:1021–1027

    Article  PubMed  Google Scholar 

  • Kaneko Y, Natsuaki T, Bang SW, Matsuzawa Y (1996) Identification and evaluation of Turnip mosaic virus (TuMV) resistance gene in kale monosomic addition lines of radish. Breed Sci 46:117–124

    Google Scholar 

  • Kaneko Y, Kimizuka-Takagi C, Bang SW, Matsuzawa Y (2007) Radish. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5. Springer, Heidelberg, pp 141–160

    Google Scholar 

  • Karling JS (1968) The Plasmodiophorales: including a complete host index, bibliography, and a description of diseases caused by species of this order, 2nd edn. Hafner, New York

    Google Scholar 

  • Kato T, Hatakeyama K, Fukino N, Matsumoto S (2013) Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa. Breed Sci 63:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendrick JB, Snyder WC (1942) Fusarium wilt of radish. Phytopathology 32:1031–1033

    Google Scholar 

  • Kifuji Y, Hanzawa H, Terasawa Y, Ashutosh Nishio T (2013) QTL analysis of black rot resistance in cabbage using newly developed EST-SNP markers. Euphytica 190:289–295

    Article  CAS  Google Scholar 

  • Kim SG, Song YH, Lee JY, Choi SR, Dhandapani V, Jang CS, Lim YP, Han TH (2011) Identification of the BrRHP1 locus that confers resistance to downy mildew in Chinese cabbage (Brassica rapa ssp pekinensis) and development of linked molecular markers. Theor Appl Genet 123:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S, Takahata Y, Kakizaki T, Ishida M, Okamoto S, Sakamoto K, Shirasawa K, Tabata S, Nishio T (2014) Draft sequences of the radish (Raphanus sativus L.) genome. DNA Res 21:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike ST, Ochoa OE (2007) Downy mildew caused by Bremia lactucae on strawflower (Helichrysum bracteatum) in California. Plant Dis 91:326

    Article  Google Scholar 

  • Kuginuki Y, Ajisaka H, Yui M, Yoshikawa H, Hida K, Hirai M (1997) RAPD markers linked to a clubroot-resistance locus in Brassica rapa L. Euphytica 98:149–154

    Article  CAS  Google Scholar 

  • Lee J, Izzah NK, Jayakodi M, Perumal S, Joh HJ, Lee HJ, Lee SC, Park JY, Yang KW, Nou IS, Seo J, Yoo J, Suh Y, Ahn K, Lee JH, Choi GJ, Yu Y, Kim H, Yang TJ (2015) Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biol 15:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Lelivelt CL, Krens FA (1992) Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm.) into the Brassica napus L. gene pool through intergeneric somatic hybridization with Raphanus sativus L. Theor Appl Genet 83:887–894

    CAS  PubMed  Google Scholar 

  • Li HS (2009) Genetic dissection of resistance to turnip mosaic virus and black rot in radish (Raphanus Sativus L.). Dissertation, Chinese Academy of Agricultural Sciences

    Google Scholar 

  • Magdi AAM (2012) Genetic behavior of resistance to the beet cyst nematode (Heterodera schachtii Schm) in radish (Raphanus sativus L.). African J Microbiol Res 6:3755–3760

    Google Scholar 

  • Molinero-Ruiz ML, Melero-Vara JM, Dominguez J (2003) Inheritance of resistance to two races of sunflower downy mildew (Plasmopara halstedii) in two Helianthus annuus L. lines. Euphytica 131:47–51

    Article  CAS  Google Scholar 

  • Mousa M, Kandeel N, Mohamed M, Nasr MA, Budahn H, Peterka H (2004) Mapping QTL (s) for resistance to the beet cyst nematode (Heterodera schachtii Schm.) in radish (Raphanus sativus L.). Ass Univ Bull Environ Res 7:1–18

    Google Scholar 

  • Paul H, Zijlstra C, Leeuwangh JE, Krens FA, Huizing HJ (1987) Reproduction of the beet cyst nematode Heterodera schachtii Schm. on transformed root cultures of Beta vulgaris L. Plant Cell Rep 6:379–381

    Article  CAS  PubMed  Google Scholar 

  • Peterka H, Budahn H, Schrader O, Ahne R, Schutze W (2004) Transfer of resistance against the beet cyst nematode from radish (Raphanus sativus) to rape (Brassica napus) by monosomic chromosome addition. Theor Appl Genet 109:30–41

    Article  CAS  PubMed  Google Scholar 

  • Piao ZY, Deng YQ, Choi SR, Park YJ, Lim YP (2004) SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor Appl Genet 108:1458–1465

    Article  CAS  PubMed  Google Scholar 

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, Hyvonen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu ZJ, Shimizu M, Zhang YJ, Nagaoka T, Hayashi T, Hori H, Matsumoto S, Fujimoto R, Okazaki K (2011) Genetic mapping of a fusarium wilt resistance gene in Brassica oleracea. Mol Breed 30:809–818

    Article  Google Scholar 

  • Qian W, Zhang S, Zhang S, Li F, Zhang H, Wu J, Wang X, Walsh JA, Sun R (2013) Mapping and candidate-gene screening of the novel Turnip mosaic virus resistance gene retr02 in Chinese cabbage (Brassica rapa L.). Theor Appl Genet 126:179–188

    Article  CAS  PubMed  Google Scholar 

  • Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059–1073

    Article  CAS  PubMed  Google Scholar 

  • Roberts PA, Thomason IJ, McKinney HE (1981) Influence of nonhosts, Crucifers, and fungal parasites on field populations of Heterodera schachtii. J Nematol 13:164–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rusholme RL, Higgins EE, Walsh JA, Lydiate DJ (2007) Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). J Gen Virol 88:3177–3186

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Kubo N, Matsumoto S, Suwabe K, Tsukada M, Hirai M (2006) Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor Appl Genet 114:81–91

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Saito A, Hayashida N, Taguchi G, Matsumoto E (2008) Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 117:759–767

    Article  CAS  PubMed  Google Scholar 

  • Shattuck V (1992) The biology, epidemiology, and control of turnip mosaic virus. Hortic Rev 14:199–238

    Google Scholar 

  • Shen Y, Diener AC (2013) Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS Genet 9:e1003525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Oyama M, Hirakawa H, Sato S, Tabata S, Fujioka T, Kimizuka-Takagi C, Sasamoto S, Watanabe A, Kato M, Kishida Y, Kohara M, Takahashi C, Tsuruoka H, Wada T, Sakai T, Isobe S (2011) An EST-SSR linkage map of Raphanus sativus and comparative genomics of the Brassicaceae. DNA Res 18:221–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu M, Fujimoto R, Ying H, Pu ZJ, Ebe Y, Kawanabe T, Saeki N, Taylor JM, Kaji M, Dennis ES, Okazaki K (2014) Identification of candidate genes for fusarium yellows resistance in Chinese cabbage by differential expression analysis. Plant Mol Biol 85:247–257

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Pu ZJ, Kawanabe T, Kitashiba H, Matsumoto S, Ebe Y, Sano M, Funaki T, Fukai E, Fujimoto R, Okazaki K (2015) Map-based cloning of a candidate gene conferring Fusarium yellows resistance in Brassica oleracea. Theor Appl Genet 128:119–130

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Dhar S, Yadava DK (2011) Genetic and pathogenic variability of Indian strains of Xanthomonas campestris pv. campestris causing black rot disease in crucifers. Curr Microbiol 63:551–560

    Article  CAS  PubMed  Google Scholar 

  • Soengas P, Hand P, Vicente JG, Pole JM, Pink DA (2007) Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet 114:637–645

    Article  CAS  PubMed  Google Scholar 

  • Stirling GR, Stanton JM, Marshall JW (1992) The importance of plant-parasitic nematodes to Australian and New Zealand agriculture. Australas Plant Pathol 21:104

    Article  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M, Nunome T, Fukuoka H, Matsumoto S, Hirai M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taha AH, Raski DJ (1969) Interrelationships between root-nodule bacteria, plant-parasitic nematodes and their leguminous host. J Nematol 1:201–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JD, Conway J, Roberts SJ, Astley D, Vicente JG (2002) Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica Genomes. Phytopathology 92:105–111

    Article  CAS  PubMed  Google Scholar 

  • Thierfelder A, Hackenberg E, Nichterlein K et al (1991) Development of nematode-resistant rapeseed genotypes via interspecific hybridization. In: Proceedings of the GCIRC 8th international rapeseed congress, pp 269–273

    Google Scholar 

  • Tomlinson J (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110:661–681

    Article  Google Scholar 

  • Tonu NN, Doullah MA-u, Shimizu M, Karim MM, Kawanabe T, Fujimoto R, Okazaki K (2013) Comparison of positions of QTLs conferring resistance to Xanthomonas campestris; pv. campestris; in Brassica oleracea. Amer J Plant Sci 04:11–20

    Article  Google Scholar 

  • Ueno H, Matsumoto E, Aruga D, Kitagawa S, Matsumura H, Hayashida N (2012) Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol Biol 80:621–629

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, Conway J, Roberts SJ, Taylor JD (2001) Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91:492–499

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE, Jongerius MC, Kanne HJ (1997) Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet 94:75–82

    Article  CAS  PubMed  Google Scholar 

  • Voss A, Lühs WW, Snowdon RJ, Friedt W (1999) Development and molecular characterisation of nematode-resistant rapeseed (Brassica napus L.). In: Mugnozza GTS, Porceddu E, Pagnotta MA (eds) Genetics and breeding for crop quality and resistance: proceedings of the XV EUCARPIA congress, Viterbo, Italy, September 20–25, 1998. Springer, Dordrecht, pp 195–202

    Chapter  Google Scholar 

  • Walsh J, Sharpe A, Jenner C, Lydiate D (1999) Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet 99:1149–1154

    Article  CAS  Google Scholar 

  • Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300

    Article  CAS  PubMed  Google Scholar 

  • Williams PH, Staub T, Sutton JC (1972) Inheritance of resistance in cabbage to black rot. Phytopathology 62:247–252

    Google Scholar 

  • Wubben MJ 2nd, Su H, Rodermel SR, Baum TJ (2001) Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Mol Plant-Microbe Interact 14:1206–1212

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Jiang QW, Wu J, Wang Y, Gong YQ, Wang XL, Limera C, Liu LW (2014) Identification and molecular mapping of the RsDmR locus conferring resistance to downy mildew at seedling stage in radish (Raphanus sativus L.). J Integr Agr 13:2362–2369

    Article  CAS  Google Scholar 

  • Yoshikawa H (1993) Studies on breeding of clubroot resistance in cole crops. Bull Natl Res Inst Veg Ornam Plants Tea Jpn Ser A 7:1–165

    Google Scholar 

  • Yu X, Choi SR, Ramchiary N, Miao X, Lee SH, Sun HJ, Kim S, Ahn CH, Lim YP (2013) Comparative mapping of Raphanus sativus genome using Brassica markers and quantitative trait loci analysis for the Fusarium wilt resistance trait. Theor Appl Genet 126:2553–2562

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Golden Seed Project, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No:213006-05-1-SBO20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Pyo Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, X., Choi, S.R., Lim, Y.P. (2017). Molecular Mapping of Disease Resistance Genes. In: Nishio, T., Kitashiba, H. (eds) The Radish Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-59253-4_12

Download citation

Publish with us

Policies and ethics