Skip to main content

Implementation Studies of Multi-rate Systems

  • Chapter
  • First Online:
Advances in Multirate Systems
  • 747 Accesses

Abstract

In this chapter, implementation aspects of multi-rate systems are discussed. Two case studies, of which one is the a up-sampling filter for transmitter and the other is a down-sampling filter for receiver, are investigated.

The focus of the up-sampling filter is on the system-level arrangement. Design challenges on the system are analyzed and tackled. The systematic optimizations are first explored to minimize the design requirements on the DSP front end. From the implementation point of view, multiplier-less pulse-shaping filters with carry-save number applied to the entire signal-processing chain, as well as multiplier-less rotation and vectoring CORDICs (COordinate Rotation DIgital Computers) for rectangular-to-polar coordination conversions, is illustrated.

The down-sampling filter case focuses on the architecture selection of the multi-rate system. To be specific, fixed multiply additions and multiply–accumulator are discussed and compared. The carry-save number format is also exploited. The results show that a successful design trade-off requires careful combination of all the architectures, since each architecture has its advantages and drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Association and others. (2012). IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for very high throughput in the 60 GHz Band. IEEE, 1–628.

    Google Scholar 

  2. Khalaf, K., et al. (2016). Digitally modulated CMOS polar transmitters for highly-efficient mm-wave wireless communication. IEEE Journal of Solid-State Circuits, 99, 1–14.

    Google Scholar 

  3. Nariman, M., Shirinfar, F., Pamarti, S., Rofougaran, M., Rofougaran, R., & De Flaviis, F. (2013). A compact millimeter-wave energy transmission system for wireless applications. In Radio frequency integrated circuits symposium (RFIC), 2013 IEEE (pp. 407–410). Seattle, WA: IEEE. doi:10.1109/RFIC.2013.6569617.

    Chapter  Google Scholar 

  4. Chan, W. L., & Long, J. R. (2010). A 60-GHz band 2 2 phased-array transmitter in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 45(12), 2682–2695.

    Article  Google Scholar 

  5. Khalaf, K., Vidojkovic, V., Vaesen, K., Long, J. R., Van Thillo, W., & Wambacq, P. (2014). A digitally modulated 60GHz polar transmitter in 40nm CMOS. In 2014 IEEE. Radio Frequency Integrated Circuits Symposium (pp. 159–162). Tampa, FL: IEEE. doi:10.1109/RFIC.2014.6851685.

    Chapter  Google Scholar 

  6. Vidojkovic, V., et al. (2013). A low-power radio chipset in 40nm LP CMOS with beamforming for 60GHz high-data-rate wireless communication. In International solid-state circuits conference digest of technical papers, 2013 IEEE (pp. 236–237). San Francisco, CA: IEEE. doi:10.1109/ISSCC.2013.6487715.

    Chapter  Google Scholar 

  7. Li, C., et al. (2016). Energy-efficient digital front-end processor for 60 GHz polar transmitter. Journal of Signal Processing Systems, 1939(8115), 1–13.

    Google Scholar 

  8. Volder, J. E. (1959). The CORDIC trigonometric computing technique. Electronic Computers IRE Transactions, 3, 330–334.

    Article  Google Scholar 

  9. Li, C., et al. (2015). <30 mW rectangular-to-polar conversion processor in 802.11ad polar transmitter. In 2015 I.E. international conference on acoustics, speech and signal processing (ICASSP) (pp. 1022–1026). Piscataway: IEEE.

    Chapter  Google Scholar 

  10. Li, C., et al. (2015). Opportunities and challenges of digital signal processing in deeply technology-scaled transceivers. Journal of Signal Processing Systems, 78(1), 5–19.

    Article  Google Scholar 

  11. Losada, R. A., & Lyons, R. (2006). Reducing CIC filter complexity. IEEE Signal Processing Magazine, 23(4), 124–126.

    Article  Google Scholar 

  12. Aboushady, H., Dumonteix, Y., Louërat, M.-M., & Mehrez, H. (2000). Efficient polyphase decomposition of comb decimation filters in sigma delta analog-to-digital converters. Circuits and Systems, 2000. Proceedings of the 43rd IEEE Midwest Symposium on, 2000, 1, 432–435.

    Google Scholar 

  13. Hentschke, S., Herrfeld, A., Reifschneider, N,. Forster, D,. Heinemann, M., & Wicke, A. (1994). A flexible repetitive CSD code filter processor unit in CMOS. in ASIC conference and exhibit, 1994. Proceedings seventh annual IEEE international ASIC conference and exhibit, Rochester, NY, (pp. 261–264). doi: 10.1109/ASIC.1994.404562.

  14. Noll, T. (1990). Carry-save arithmetic for high-speed digital signal processing. In 1990 IEEE international symposium on circuits and systems (pp. 982–986). New Orleans: IEEE. doi:10.1109/ISCAS.1990.112267.

  15. Koc, C. K., & Hung, C. Y. (1990). Multi-operand modulo addition using carry save adders. Electronics Letters, 26(6), 361–363.

    Article  Google Scholar 

  16. Gustafsson, O., Dempster, A. G., & Wanhammar, L. (2004). Multiplier blocks using carry-save adders. Circuits and Systems, 2004. ISCAS ‘04. Proceedings of the 2004 International Symposium on, 2004, 2, I-473–I-476.

    Google Scholar 

  17. Huang, Y., Kapoor, A., Rutten, R., & Pineda de Gyvez, J. (2015). A 13bits 4.096GHz 45nm CMOS digital decimation filter chain with carry-save format numbers. Microprocessors and Microsystems, 39(8), 869–878.

    Article  Google Scholar 

  18. Huang, Y., Kapoor, A., Rutten, R., & Pineda de Gyvez, J. (2013). A 13 bits 4.096 GHz 45 nm CMOS digital decimation filter chain using Carry-Save format numbers (pp. 1–4). Vilnius: 2013 NORCHIP. doi:10.1109/NORCHIP.2013.6702042.

    Google Scholar 

  19. Dadda, L. (1965). Some schemes for parallel multipliers. Alta Frequency, 34, 349–356.

    Google Scholar 

  20. Oklobdzija, V. G., Villeger, D., & Liu, S. S. (1996). A method for speed optimized partial product reduction and generation of fast parallel multipliers using an algorithmic approach. IEEE Transactions on Computers, 45(3), 294–306.

    Article  MATH  Google Scholar 

  21. Huang, Y., Li, M., Li, C., Debacker, P., & Van der Perre, L. (2014). Computation-skip error resilient scheme for recursive CORDIC. In 2014 IEEE workshop on signal processing systems (SiPS) (pp. 1–6). Belfast: IEEE. doi:10.1109/SiPS.2014.6986061.

    Google Scholar 

  22. Bi, Z., & Dai, Y. (2012). Full custom data path of 16-bit CORDIC. In 2012 IEEE fifth international conference on advanced computational intelligence (ICACI) (pp. 993–998). Nanjing: IEEE. doi:10.1109/ICACI.2012.6463320.

    Chapter  Google Scholar 

  23. Kwak, J. H., Piuri, V., & Swartzlander, E. E. (2000). Fault-tolerant high-performance CORDIC processors. In Proceedings IEEE international symposium on defect and fault tolerance in VLSI systems (pp. 164–172). Yamanashi: IEEE. doi:10.1109/DFTVS.2000.887154.

    Chapter  Google Scholar 

  24. Umemoto, Y., et al. (2014). 28 nm 50% power-reducing contacted mask read only memory macro with 0.72-ns read access time using 2T pair bit cell and dynamic column source bias control technique. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(3), 575–584.

    Article  Google Scholar 

  25. Lee, B., & Burgess, N. (2003). Some results on Taylor-series function approximation on FPGA. Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on, 2003, 2, 2198–2202.

    Google Scholar 

  26. Huang, Y., et al. (2016). A 28 nm CMOS 7.04 Gsps polar digital front-end processor for 60 GHz transmitter. In 2016 IEEE Asian solid-state circuits conference (A-SSCC) (pp. 333–336). Toyama: IEEE. doi:10.1109/ASSCC.2016.7844203.

    Chapter  Google Scholar 

  27. Vaidyanathan, P. P. (1990). Multirate digital filters, filter banks, polyphase networks, and applications: A tutorial. Proceedings of the IEEE, 78(1), 56–93.

    Article  Google Scholar 

  28. Coffey, M. W. (2003). Optimizing multistage decimation and interpolation processing. IEEE Signal Processing Letters, 10(4), 107–110.

    Article  Google Scholar 

  29. van den Enden, A. W. M. (2001). Efficiency in multirate and complex digital signal processing. Amerongen: Delta Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunshu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Huang, Y., Li, C. (2018). Implementation Studies of Multi-rate Systems. In: Dolecek, G. (eds) Advances in Multirate Systems . Springer, Cham. https://doi.org/10.1007/978-3-319-59274-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59274-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59273-2

  • Online ISBN: 978-3-319-59274-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics