Skip to main content

Thermochemical Routes of Glycerol Transformation to Commodity Chemicals

  • Chapter
  • First Online:
Glycerol

Abstract

The chemical industry ultimately produces polymers for the use of the general public. Today, most of the chemicals are based on oil, coal or natural gas, which reserves are limited and exploitation associated with global warming. In the past years, there were many developments of technological routes to produce chemicals from renewable. The possibility of replacing oil and gas by biomass puts the chemical industry at the forefront of the research and development of new processes. This chapter highlights recent advances in the conversion of glycerol to commodity chemicals, mostly used to produce polymers. Glycerol can be an interesting raw material to replace propylene-based chemicals, such as propylene glycol, acrolein and acrylic acid. Other developments are also discussed, such as a pioneer process of selective glycerol hydrogenolysis to propene itself, as well as production of syngas, hydrogen and methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaminand J, Dajakovitch L, Gallezot P, Marion P, Pinel C, Rosierb C (2004) Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem 6:359–361

    Article  CAS  Google Scholar 

  2. Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes J (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A 281:225–231

    Article  CAS  Google Scholar 

  3. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) Glycerol conversion in the aqueous solution under hydrogen over Ru/C plus an ion-exchange resin and its reaction mechanism. J Catal 240:213–221

    Article  CAS  Google Scholar 

  4. Gong L, Lu Y, Ding Y, Lin R, Li J, Dong W, Wang T, Chen W (2009) Solvent effect on selective dehydroxylation of glycerol to 1,3-propanediol over a Pt/WO3/ZrO2 catalyst. Chin J Catal 30:1189–1191

    Article  CAS  Google Scholar 

  5. Zheng Y, Chen X, Shen Y (2008) Commodity chemicals derived from glycerol, an important biorefinery feedstock. Chem Rev 108:5223

    Article  Google Scholar 

  6. Casale B, Gomez AM (1994) Catalytic method of hydrogenating glycerol. US pat 5, 276, 18, 1994

    Google Scholar 

  7. Ludwig S, Manfred E (1997) Preparation of 1,2-propanediol. US 5616817 A

    Google Scholar 

  8. Wawrzetz A, Peng B, Hrabar A, Jentys A, Lemonidou AA, Lercher JA (2010) Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol. J Catal 269:411–420

    Article  CAS  Google Scholar 

  9. Maris EP, Davis RJ (2007) Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. J Catal 249:328–337

    Article  CAS  Google Scholar 

  10. Wang S, Liu H (2007) Selective hydrogenolysis of glycerol to propylene glycol on cu–ZnO catalysts. Catal Lett 117:62–67

    Article  CAS  Google Scholar 

  11. Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C. Appl Catal A Gen 329:30–35

    Article  CAS  Google Scholar 

  12. Kusunoki Y, Miyazawa T, Kunimori K, Tomishige K (2005) Highly active metal–acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions. Catal Commun 6:645–649

    Article  CAS  Google Scholar 

  13. Ren T, Patel M, Blok K (2006) Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes. Energy 31:425

    Article  CAS  Google Scholar 

  14. Chen D, Moljord K, Holmen A (2012) A methanol to olefins review: diffusion, coke formation and deactivation on SAPO type catalysts. Microporous Mesoporous Mater 164:239

    Article  CAS  Google Scholar 

  15. Khanmohammadi M, Amani S, Bagheri Garmarudi A, Niaei A (2016) Methanol-to-propylene process: perspective of the most important catalysts and their behavior. Chin J Catal 37:325–339

    Article  CAS  Google Scholar 

  16. Han Z, Li S, Jiang F, Wang T, Ma X, Gongo J (2014) Propane dehydrogenation over Pt–cu bimetallic catalysts: the nature of coke deposition and the role of copper. Nanoscale 6:10000–10008

    Article  CAS  Google Scholar 

  17. Liu Y, Sotelo-Boyás R, Murata K, Minowa T, Sakanishi K (2011) Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni–Mo and solid acids. Energy Fuel 25:4675–4685

    Article  CAS  Google Scholar 

  18. Mota CJA, Gonçalves VLC, Fadigas JC, Gambetta R (2009) Preparation of heterogeneous catalysts used in selective hydrogenation of glycerin to propene, and a process for the selective hydrogenation of glycerin to propene. WO2009155674A1

    Google Scholar 

  19. Mota CJA, Gonçalves VLC, Fadigas JC, Gambetta R (2011) Preparation of heterogeneous catalysts used in selective hydrogenation of glycerin to propene, and a process for the selective hydrogenation of glycerin to propene. US20110184216A1

    Google Scholar 

  20. Mota CJA, Gonçalves VLC, Mellizo JE, Rocco AM, Fadigas JC, Gambetta R (2016) Green propene through the selective hydrogenolysis of glycerol over supported iron-molybdenum catalyst: the original history. J Mol Catal A 422:158–164

    Article  CAS  Google Scholar 

  21. Zacharopoulou V, Vasiliadou ES, Lemonidou A (2015) One-step propylene formation from bio-glycerol over molybdena-based catalysts. Green Chem 17:903–912

    Article  CAS  Google Scholar 

  22. Yu L, Yuan J, Zhang Q, Liu YM, He HY, Fan KN, Cao Y (2014) ChemSusChem 7:743

    Article  CAS  Google Scholar 

  23. Mohamad MH, Awang R, Yunus WMZW (2011) A review of acetol: application and production. Am J Appl Sci 8:1135–1139

    Article  CAS  Google Scholar 

  24. Chai SH, Wang HP, Liang Y, Xu BQ (2007) Sustainable production of acrolein: investigation of solid acid–base catalysts for gas-phase dehydration of glycerol. Green Chem 9:1130–1136

    Article  CAS  Google Scholar 

  25. Katryniok B, Paul S, Belliùre-Baca V, Rey P, Dumeignil F (2010) Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chem 12:2079–2098

    Article  CAS  Google Scholar 

  26. Velasquez M, Santamaria A, Dupeyrat CB (2014) Selective conversion of glycerol to hydroxyacetone in gas phase over La2CuO4 catalyst. Appl Catal B 160-161:606–613

    Article  CAS  Google Scholar 

  27. Oliveira AC, Carvalho DC, Pinheiro LG, Campos A, Miller ERC, Souza FF, Filho JM, Saraiva GD, Filho ACS, Fonseca MG (2014) Characterization and catalytic performances of copper and cobalt-exchanged hydroxyapatite in glycerol conversion for 1-hydroxyacetone production. Appl Catal A 14(471):39–49

    Google Scholar 

  28. Possato LF, Diniz RN, Garetto T, Pulcinelli SH, Santilli CV, Martins L (2013) A comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites. J Catal 300:102–112

    Article  CAS  Google Scholar 

  29. Andrushkevich TV (1993) Heterogeneous catalytic oxidation of acrolein to acrylic acid: mechanism and catalysts. Catal Rev Sci Eng 35:213–252

    Article  CAS  Google Scholar 

  30. Kampe P, Giebelder L, Smuelis D, Kunert J, Drochner A, Haass F, Adams AH, Ott J, Endres S, Shimanke G, Buhrmester T, Martin M, Fuess H, Vogel H (2007) Heterogeneously catalysed partial oxidation of acrolein to acrylic acid—structure, function and dynamics of the V–Mo–W mixed oxides. Phys Chem Chem Phys 9:3577–3589

    Article  CAS  Google Scholar 

  31. Doornkamp C, Ponec V (2000) The universal character of the Mars and van Krevelen mechanism. J Mol Catal A 162:19–32

    Article  CAS  Google Scholar 

  32. Wang F, Dubois JL, Ueda W (2010) Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol. Appl Catal A 376:25–32l

    Article  CAS  Google Scholar 

  33. Ulgen A, Hoelderich W (2011) Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts. Appl Catal A 400:34–38

    Article  CAS  Google Scholar 

  34. Soriano MD, Concepcion P, Nieto JML, Cavani F, Guidetti S, Trevisanut C (2011) Tungsten-vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chem 13:2954–2962

    Article  CAS  Google Scholar 

  35. Pestana CFM, Guerra ACO, Ferreira GB, Turci CC, Mota CJA (2013) Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta. J Braz Chem Soc 24:100–105

    Article  CAS  Google Scholar 

  36. Possato LG, Cassinelli WH, Garetto T, Pulcinelli SH, Santilli CV, Martins L (2015) One-step glycerol oxidehydration to acrylic acid on multifunctional zeolite catalysts. Appl Catal A Gen 492:243–251

    Article  CAS  Google Scholar 

  37. Li X, Zhang Y (2016) Oxidative dehydration of glycerol to acrylic acid over vanadium-substituted cesium salts of keggin-type heteropolyacids. ACS Catal 6:2785–2791

    Article  CAS  Google Scholar 

  38. Santacesaria E, Tesser R, Di Serio M, Casale L, Verde D (2010) New process for producing epichloridrin via glycerol chlorination. Ind Eng Chem Res 49:964–970

    Article  CAS  Google Scholar 

  39. Tesser R, Santacesaria E, Di Serio M, Di Nuzzi G, Fiandra V (2007) Kinetics of glycerol chlorination with hydrochloric acid: a new route to α,Îł-dichlorohydrin. Ind Eng Chem Res 46:6456–6465

    Article  CAS  Google Scholar 

  40. Almena A, Martin M (2016) Technoeconomic analysis of the production of epichloridrin from glycerol. Ind Eng Chem Res 55:3226–3238

    Article  CAS  Google Scholar 

  41. Leung DYC, Caramanna G, Mercedes Maroto-Vale M (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39:426–443

    Article  CAS  Google Scholar 

  42. Schwengber CA, Alves HJ, Schaffner RA, Silva FA, Sequinel R, Bach VR, Ferracin RJ (2016) Overview of glycerol reforming for hydrogen production. Renew Sust Energ Rev 58:259–266

    Article  CAS  Google Scholar 

  43. Soares RR, Simonetti DA, Dumesic JA (2006) Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angew Chem Int Ed 45:3982

    Article  CAS  Google Scholar 

  44. Shao S, Shi AW, Liu CL, Yang RZ, Dong WS (2014) Hydrogen production from steam reforming of glycerol over Ni/CeZrO catalysts. Fuel Process Technol 125:1–7

    Article  CAS  Google Scholar 

  45. Kim SH, Go YJ, Park NC, Kim JH, Kim YC, Moon DJ (2015) Steam reforming of glycerol over nano size Ni-Ce/LaAlO3 catalysts. J Nanosci Nanotechnol 15(1):522–526

    Article  CAS  Google Scholar 

  46. Simonetti DA, Rass-Hansen J, Kunkes EL, Soares RR, Dumesic JA (2007) Coupling of glycerol processing with Fischer–Tropsch synthesis for production of liquid fuels. Green Chem 9:1073

    Article  CAS  Google Scholar 

  47. Olah GA, Goeppert A, Prakash GKS (2009) Beyond oil and gas: the methanol economy, 2nd edn. WileyVCH, Weinheim

    Book  Google Scholar 

  48. Goeppert A, Czaun M, Jones JP, Prakash GKS, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem Soc Rev 43:7995–8048

    Article  CAS  Google Scholar 

  49. van Bennekom JG, Venderbosch RH, Assink D, Lemmens KPJ, Heere HJ (2012) Bench scale demonstration of the Supermethanol concept: the synthesis of methanol from glycerol derived syngas. Chem Eng J 207–208:245–253

    Article  Google Scholar 

  50. van Bennekom JG, Venderbosch RH, Heeres HJ (2012) Biomethanol from glycerol. In: Fang Z (ed) Biodiesel – feedstocks, production and applications. InTech, Rijeka. 498 pp. ISBN: 978-953-51-0910-5

    Google Scholar 

  51. Shozi ML, Dasireddy VDBC, Singh S, Mohlala P, Morgan DJ, Friedrich HB (2016) Hydrogenolysis of glycerol to monoalcohols over supported Mo and W catalysts. ACS Sustain Chem Eng 4(10):5752–5760

    Article  CAS  Google Scholar 

  52. Haider MH, Dummer NF, Knight DW, Jenkins RL, Howard M, Moulijn J, Taylor SH, Hutchings GJ (2015) Efficient green methanol synthesis from glycerol. Nat Chem 7:1028–1032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mota, C.J.A., Peres Pinto, B., de Lima, A.L. (2017). Thermochemical Routes of Glycerol Transformation to Commodity Chemicals. In: Glycerol. Springer, Cham. https://doi.org/10.1007/978-3-319-59375-3_4

Download citation

Publish with us

Policies and ethics