Skip to main content

Magnetotransport and Spin Current Effects

  • Chapter
  • First Online:
Principles of Nanomagnetism

Part of the book series: NanoScience and Technology ((NANO))

  • 1964 Accesses

Abstract

In this chapter, a brief account of some phenomena resulting from the interplay of the magnetization of a sample and the spin-polarized currents , the physical basis of spin electronics, or Spintronics will be given. These include the giant magnetoresistance and tunnel magnetoresistance effects. Simple models for the description of these effects are presented. Other spin current effects are discussed: the spin- induced, or spin transfer torque , the spin Hall effect, spin pumping , and spin thermal effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For considerations on the concept of chemical potential see [6, 19] .

References

  1. H. Adachi, K. Uchida, E. Saitoh, S. Maekawa, Theory of the spin Seebeck effect. Rep. Prog. Phys. 76(3), 036501 (2013)

    Article  ADS  Google Scholar 

  2. K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, E. Saitoh, Inverse spin-Hall effect induced by spin pumping in metallic system. J. Appl. Phys. 109, 103913 (2011)

    Article  ADS  Google Scholar 

  3. S. Araki, Magnetism and transport properties of evaporated Co/Ag multilayers. J. Appl. Phys. 73, 3910–3916 (1993)

    Article  ADS  Google Scholar 

  4. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Saunders, New York, 1976)

    MATH  Google Scholar 

  5. M. Baibich, J.M. Broto, A. Fert, N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  ADS  Google Scholar 

  6. R. Baierlein, The elusive chemical potential. Am. J. Phys. 69, 423–434 (2001)

    Article  ADS  Google Scholar 

  7. J. Barnas, V.K. Dugaev, Giant magnetoresistance and applications, in Magnetism of Surfaces, Interfaces, and Nanoscale Materials, vol. 5, ed. by R. Camley, Z. Celinski, R. Stamps (Elsevier Science, Amsterdam, 2015)

    Chapter  Google Scholar 

  8. J. Bass, W.P. Pratt Jr., Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review. J. Phys. Condens. Matter 19, 183201–183241 (2007)

    Article  ADS  Google Scholar 

  9. J. Bass, W.P. Pratt Jr., Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers. J. Magn. Magn. Mater. 200, 274–289 (1999)

    Article  ADS  Google Scholar 

  10. V. Basso, E. Ferraro, A. Magni, A. Sola, M. Kuepferling, M. Pasquale, Nonequilibrium thermodynamics of the spin Seebeck and spin Peltier effects. Phys. Rev. B 93, 184421 (2016)

    Article  ADS  Google Scholar 

  11. G.S.D. Beach, C. Knutson, M. Tsoi, J.L. Erskine, Field- and current-driven domain wall dynamics: an experimental picture. J. Magn. Magn. Mater. 310, 2038–2040 (2007)

    Article  ADS  Google Scholar 

  12. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. 54B, 9353–9358 (1996)

    Article  ADS  Google Scholar 

  13. A. Brataas, A.D. Kent, H. Ohno, Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012)

    Article  ADS  Google Scholar 

  14. S.D. Brechet, J.-P. Ansermet, Heat-driven spin currents on large scales. Phys. Status Sol. Rapid Res. Lett. 5, 423–425 (2011)

    Article  ADS  Google Scholar 

  15. M.E. Brubaker, J.E. Mattson, C.H. Sowers, S.D. Bader, Oscillatory interlayer magnetic coupling of sputtered Fe/Mo superlattices. Appl. Phys. Lett. 58, 2306–2308 (1991)

    Article  ADS  Google Scholar 

  16. I.A. Campbell, A. Fert, Transport properties of ferromagnets, in Handbook of Magnetic Materials, vol. 3, ed. by E.P. Wohlfarth (North-Holland, Amsterdam, 1982), pp. 747–804

    Google Scholar 

  17. I.A. Campbell, A. Fert, O. Jaoul, The spontaneous resistivity anisotropy in Ni-based alloys. J. Phys. C Sol. Stat. Phys. 3, S95 (1970)

    Article  ADS  Google Scholar 

  18. Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S.T.B. Goennenwein, E. Saitoh, G.E.W. Bauer, Theory of spin Hall magnetoresistance (SMR) and related phenomena. J. Phys. Condens. Matter 28, 103004 (2016)

    Article  ADS  Google Scholar 

  19. G. Cook, R.H. Dickerson, Understanding the chemical potential. Am. J. Phys. 63, 737–742 (1995)

    Article  ADS  Google Scholar 

  20. A.P. Cracknell, Symmetry properties of the transport coefficients of magnetic crystals. Phys. Rev. B 7, 2145–2154 (1973)

    Article  ADS  Google Scholar 

  21. S. Daimon, R. Iguchi, T. Hioki, E. Saitoh, K. Uchida, Thermal imaging of spin Peltier effect. Nat. Commun. 7, 13754 (2016)

    Article  ADS  Google Scholar 

  22. C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, The defining length scales of nanomagnetism: a review. J. Phys. Condens. Matter 14, R1175–R1262 (2002)

    Article  ADS  Google Scholar 

  23. M.I. Dyakonov, V.I. Perel, Possibility of orienting electron spins with current. JETP Lett. 13, 657–660 (1971)

    Google Scholar 

  24. H. Ebert, A. Vernes, J. Banhart, Magnetoresistance, anisotropic, in Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn., ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2005), pp. 818–822

    Google Scholar 

  25. J. Flipse, F.L. Bakker, A. Slachter, F.K. Dejene, B.J. van Wees, Direct observation of the spin-dependent Peltier effect. Nat. Nanotechnol. 7, 166–168 (2012)

    Article  ADS  Google Scholar 

  26. J. Flipse, F.K. Dejene, D. Wagenaar, G.E.W. Bauer, J. Ben Youssef, B.J. van Wees, Observation of the spin Peltier effect for magnetic insulators. Phys. Rev. Lett. 113, 027601 (2014)

    Article  ADS  Google Scholar 

  27. M.R.J. Gibbs, E.W. Hill, P. Wright, Magnetic microelectromechanical systems: MagMEMS, in Handbook of Magnetic Materials, ed. by K.H.J. Buschow (Elsevier, Amsterdam, 2008), pp. 457–526

    Google Scholar 

  28. M.A.M. Gijs, Experiments on the perpendicular giant magnetoresistance in magnetic multilayers, in Magnetic Multilayers and Giant Magnetoresistance, ed. by U. Hartmann (Springer, Berlin, 2000), pp. 129–177

    Chapter  Google Scholar 

  29. L. Gravier, S. Serrano-Guisan, F. Reuse, J.-P. Ansermet, Thermodynamic description of heat and spin transport in magnetic nanostructures. Phys. Rev. B 73, 024419 (2006)

    Article  ADS  Google Scholar 

  30. P. Grünberg, D.E. Burgler, H. Dassow, A.D. Rata, C.M. Schneider, Spin-transfer phenomena in layered magnetic structures: physical phenomena and materials aspects. Acta Mater. 55, 1171–1182 (2007)

    Article  Google Scholar 

  31. M. Hayashi, L. Thomas, Y.B. Bazaliy, C. Rettner, R. Moriya, X. Jiang, S.S.P. Parkin, Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Phys. Rev. Lett. 96, 197207–4 (2006)

    Article  ADS  Google Scholar 

  32. F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. Beach, E. Fullerton, C. Leighton, A. MacDonald, D. Ralph, D. Arena, H. Durr, P. Fischer, J. Grollier, J. Heremans, T. Jungwirth, A. Kimmel, B. Koopmans, I. Krivorotov, S. May, A. Petford-Long, J. Rondinelli, N. Samarth, I. Schuller, A. Slavin, M. Stiles, O. Tchernyshyov, A. Thiaville, B. Zink, Interface-induced phenomena in magnetism. arXiv cond-mat, 1607.00439 (2016)

    Google Scholar 

  33. A. Hirohata, K. Takanashi, Future perspectives for spintronic devices. J. Phys. D Appl. Phys. 47, 193001 (2014)

    Article  ADS  Google Scholar 

  34. S. Hoffman, K. Sato, Y. Tserkovnyak, Landau-lifshitz theory of the longitudinal spin Seebeck effect. Phys. Rev. B 88, 064408 (2013)

    Article  ADS  Google Scholar 

  35. A. Hoffmann, Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013)

    Article  ADS  Google Scholar 

  36. H. Idzuchi, Y. Fukuma, Y. Otani, Spin transport in non-magnetic nano-structures induced by non-local spin injection. Physica E 68, 239–263 (2015)

    Article  ADS  Google Scholar 

  37. J. Inoue, GMR, TMR, BMR, and related phenomena, in Nanomagnetism and Spintronics, 2nd edn., ed. by T. Shinjo (Elsevier, Amsterdam, 2014)

    Google Scholar 

  38. Q.Y. Jin, M. Lu, Q.S. Bie, Y.B. Xu, H.R. Zhai, Y.H. Shen, Magnetic properties and interlayer coupling of superlattices. J. Magn. Magn. Mater. 140–144, 565–566 (1995)

    Article  Google Scholar 

  39. M. Johnson, R.H. Silsbee, Coupling of electronic charge and spin at a ferromagnetic-paramagnetic metal interface. Phys. Rev. B 37, 5312–5325 (1988)

    Article  ADS  Google Scholar 

  40. M. Jullière, Tunneling between ferromagnetic films. Phys. Lett. 54A, 225–226 (1975)

    Article  ADS  Google Scholar 

  41. T. Jungwirth, J. Wunderlich, K. Olejnik, Spin Hall effect devices. Nat. Mater. 11, 382–390 (2012)

    Article  ADS  Google Scholar 

  42. B. Kardasz, B. Heinrich, Ferromagnetic resonance studies of accumulation and diffusion of spin momentum density in Fe/Ag/Fe/GaAs(001) and Ag/Fe/GaAs(001) structures. Phys. Rev. B 81, 094409 (2010)

    Article  ADS  Google Scholar 

  43. Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Observation of the Spin Hall Effect in semiconductors. Science 306(5703), 1910–1913 (2004)

    Article  ADS  Google Scholar 

  44. T. Kikkawa, K. Uchida, S. Daimon, Y. Shiomi, H. Adachi, Z. Qiu, D. Hou, X.-F. Jin, S. Maekawa, E. Saitoh, Separation of longitudinal spin Seebeck effect from anomalous Nernst effect: determination of origin of transverse thermoelectric voltage in metal/insulator junctions. Phys. Rev. B 88, 214403 (2013)

    Article  ADS  Google Scholar 

  45. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003)

    Article  ADS  Google Scholar 

  46. P.R. LeClair, J.S. Moodera, Tunneling magnetoresistance experiment (non-MgO magnetic tunnel junctions), in Handbook of Spin Transport and Magnetism, ed. by E.Y. Tsymbal, I. Zutic (CRC Press, Boca Raton, 2011)

    Google Scholar 

  47. L. Liu, C.-T. Chen, J.Z. Sun, Spin Hall effect tunnelling spectroscopy. Nat. Phys. 10, 561–566 (2014)

    Article  Google Scholar 

  48. L. Liu, C.-F. Pai, Y. Li, H.W. Tseng, D.C. Ralph, R.A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012)

    Article  ADS  Google Scholar 

  49. N. Locatelli, V. Cros, J. Grollier, Spin-torque building blocks. Nat. Mater. 13, 11–20 (2014)

    Article  ADS  Google Scholar 

  50. S. Maekawa, H. Adachi, K. Uchida, J. Ieda, E. Saitoh, Spin current: experimental and theoretical aspects. J. Phys. Soc. Jpn. 82, 102002 (2013)

    Article  ADS  Google Scholar 

  51. G. Malinowski, O. Boulle, M. Kläui, Current-induced domain wall motion in nanoscale ferromagnetic elements. J. Phys. D Appl. Phys. 44, 384005 (2011)

    Article  Google Scholar 

  52. T. McGuire, R. Potter, Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975)

    Article  ADS  Google Scholar 

  53. J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995)

    Article  ADS  Google Scholar 

  54. J.S. Moodera, T.S. Santos, T. Nagahama, The phenomena of spin-filter tunnelling. J. Phys. Condens. Matter 19, 165202 (2007)

    Article  ADS  Google Scholar 

  55. N.F. Mott, The electrical conductivity of transition metals. Proc. R. Soc. Lond. Ser. A 153, 699–717 (1936)

    Article  ADS  Google Scholar 

  56. N.F. Mott, The resistance and thermoelectric properties of the transition metals. Proc. R. Soc. Lond. Ser. A 156, 368–382 (1936)

    Article  ADS  Google Scholar 

  57. N.F. Mott, Electrons in transition metals. Adv. Phys. 13, 325–422 (1964)

    Article  ADS  MATH  Google Scholar 

  58. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010)

    Article  ADS  Google Scholar 

  59. R. Nakatani, T. Dei, Y. Sugita, Oscillation of magnetoresistance in [Ni-Fe/Cu]\(_{20}\)/Cu/Fe multilayers with thickness of Cu spacer neighboring Fe buffer layer. J. Appl. Phys. 73, 6375–6377 (1993)

    Article  ADS  Google Scholar 

  60. H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G.E.W. Bauer, S.T.B. Goennenwein, E. Saitoh, Spin Hall magnetoresistance induced by a nonequilibrium proximity effect. Phys. Rev. Lett. 110, 206601 (2013)

    Article  ADS  Google Scholar 

  61. Y. Otani, T. Kimura, Nonlocal spin valves in metallic nanostructures, in Handbook of Spin Transport and Magnetism, ed. by E.Y. Tsymbal, I. Zutic (CRC Press, Boca Raton, 2012)

    Google Scholar 

  62. B.G. Park, J. Wunderlich, D.A. Williams, S.J. Joo, K.Y. Jung, K.H. Shin, K. Olejnik, A.B. Shick, T. Jungwirth, Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlO\(_x\)/Pt structures. Phys. Rev. Lett. 100, 087204–7 (2008)

    Article  ADS  Google Scholar 

  63. S.S.P. Parkin, R. Bhadra, K.P. Roche, Oscillatory magnetic exchange coupling through thin copper layers. Phys. Rev. Lett. 66, 2152–2155 (1991)

    Article  ADS  Google Scholar 

  64. S.S.P. Parkin, R.F.C. Farrow, R.F. Marks, A. Cebollada, G.R. Harp, R.J. Savoy, Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers. Phys. Rev. Lett. 72, 3718–3721 (1994)

    Article  ADS  Google Scholar 

  65. S.S.P. Parkin, N. More, K.P. Roche, Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307 (1990)

    Article  ADS  Google Scholar 

  66. S.M. Rezende, R.L. Rodríguez-Suárez, R.O. Cunha, A.R. Rodrigues, F.L.A. Machado, G.A. Fonseca Guerra, J.C. Lopez Ortiz, A. Azevedo, Magnon spin-current theory for the longitudinal spin-Seebeck effect. Phys. Rev. B 89, 014416 (2014)

    Article  ADS  Google Scholar 

  67. S.M. Rezende, R.L. Rodríguez-Suárez, R.O. Cunha, J.C. López Ortiz, A. Azevedo, Bulk magnon spin current theory for the longitudinal spin Seebeck effect. J. Magn. Magn. Mater. 400, 171–177 (2016)

    Article  ADS  Google Scholar 

  68. S.M. Rezende, R.L. Rodríguez-Suárez, A. Azevedo, Magnetic relaxation due to spin pumping in thick ferromagnetic films in contact with normal metals. Phys. Rev. B 88, 014404 (2013)

    Article  ADS  Google Scholar 

  69. B. Rodmacq, G. Palumbo, P. Gerard, Magnetrresistive properties and thermal stability of Ni-Fe/Ag multilayers. J. Magn. Magn. Mater. 118, L11–L16 (1993)

    Article  ADS  Google Scholar 

  70. H. Sato, T. Matsudai, W. Abdul-Razzaq, C. Fierz, P.A. Schroeder, Transport properties of the Cu/Ni multilayer system. J. Phys. Condens. Matter 6, 6151–6162 (1994)

    Article  ADS  Google Scholar 

  71. R. Schad, C.D. Potter, P. Belien, G. Verbanck, J. Dekoster, G. Langouche, V.V. Moshchalkov, Y. Bruynseraede, Interplay between interface properties and giant magnetoresistance in epitaxial Fe/Cr superlattices. J. Magn. Magn. Mater. 148, 331–332 (1995)

    Article  ADS  Google Scholar 

  72. J. Shibata, G. Tatara, H. Kohno, A brief review of field- and current-driven domain-wall motion. J. Phys. D Appl. Phys. 44, 384004 (2011)

    Article  Google Scholar 

  73. K. Shintaku, Y. Daitoh, T. Shinjo, Magnetoresistance effect and interlayer exchange coupling in epitaxial Fe/Au(100) and Fe/Au(111) multilayers. Phys. Rev. B 47, 14584–14587 (1993)

    Article  ADS  Google Scholar 

  74. R.H. Silsbee, A. Janossy, P. Monod, Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic–normal-metal interface. Phys. Rev. B 19, 4382–4399 (1979)

    Article  ADS  Google Scholar 

  75. J. Sinova, S.O. Valenzuela, J. Wunderlich, C.H. Back, T. Jungwirth, Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015)

    Article  ADS  Google Scholar 

  76. J.C. Slonczewski, Conductance and exchange barrier coupling of 2 ferromagnets separated by a tunnelling barrier. Phys. Rev. B 39, 6995–7002 (1989)

    Article  ADS  Google Scholar 

  77. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  ADS  Google Scholar 

  78. M.B. Stearns, Simple explanation of tunnelling spin-polarization of Fe, Co, and Ni and its alloys. J. Magn. Magn. Mater. 5, 167–171 (1977)

    Article  ADS  Google Scholar 

  79. J. Stöhr, H.C. Siegmann, Magnetism From Fundamentals to Nanoscale Dynamics (Springer, Berlin, 2006)

    Google Scholar 

  80. Y. Suzuki, A.A. Tulapurkar, Y. Shiota, C. Chappert, Spin injection and voltage effects in magnetic nanopillars and its applications, in Nanomagnetism and Spintronics, 2nd edn., ed. by T. Shinjo (Elsevier, Amsterdam, 2014)

    Google Scholar 

  81. G. Tatara, H. Kohno, Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601-4 (2004)

    Article  ADS  Google Scholar 

  82. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005)

    Article  ADS  Google Scholar 

  83. L. Thomas, S. Parkin, Current induced domain-wall motion in magnetic nanostructures, in Handbook of Magnetism and Advanced Magnetic Materials, ed. by H. Kronmüller, S. Parkin (Wiley, Chichester, 2007), pp. 942–982

    Google Scholar 

  84. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002)

    Article  ADS  Google Scholar 

  85. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, B.I. Halperin, Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys. 77, 1375–1421 (2005)

    Article  ADS  Google Scholar 

  86. E.Y. Tsymbal, N. Mryasov, P.R. LeClair, Spin-dependent tunnelling in magnetic tunnel junctions. J. Phys. Condens. Matter 15, R109–R142 (2003)

    Article  ADS  Google Scholar 

  87. K. Uchida, A. Kirihara, M. Ishida, R. Takahashi, E. Saitoh, Local spin-Seebeck effect enabling two-dimensional position sensing. Jpn. Appl. Phys. 50, 120211 (2011)

    Article  ADS  Google Scholar 

  88. K. Uchida, T. Ota, H. Adachi, J. Xiao, T. Nonaka, Y. Kajiwara, G.E.W. Bauer, S. Maekawa, E. Saitoh, Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect. J. Appl. Phys. 111, 103903 (2012)

    Article  ADS  Google Scholar 

  89. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Observation of the spin Seebeck effect. Nature 455, 778–781 (2008)

    Article  ADS  Google Scholar 

  90. T. Valet, A. Fert, Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099–7113 (1993)

    Article  ADS  Google Scholar 

  91. M. Weiler, M. Althammer, M. Schreier, J. Lotze, M. Pernpeintner, S. Meyer, H. Huebl, R. Gross, A. Kamra, J. Xiao, Y.-T. Chen, H.-J. Jiao, G.E.W. Bauer, S.T.B. Goennenwein, Experimental test of the spin mixing interface conductivity concept. Phys. Rev. Lett. 111, 176601 (2013)

    Article  ADS  Google Scholar 

  92. E.L. Wolf, Nanophysics and Nanotechnology (Wiley, Weinheim, 2006)

    Book  Google Scholar 

  93. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  ADS  Google Scholar 

  94. H. Yanagihara, K. Pettit, M.B. Salamon, S.S.P. Kita, E. Parkin, Magnetoresistance and magnetic properties of Co/Ir multilayers on MgO(110) substrates. J. Appl. Phys. 81, 5197–5199 (1997)

    Article  ADS  Google Scholar 

  95. I. Zutic, J. Fabian, S. Das Sarma, Spintronics. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto P. Guimarães .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guimarães, A.P. (2017). Magnetotransport and Spin Current Effects. In: Principles of Nanomagnetism. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-59409-5_5

Download citation

Publish with us

Policies and ethics